分析 設切點為(m,n),代入曲線方程和切線的方程,求得函數(shù)的導數(shù),可得切線的斜率,解方程可得m=1,即可得到b=-1.
解答 解:設切點為(m,n),n=$\frac{1}{2}$m+b=-$\frac{1}{2}$m+lnm,
y=-$\frac{1}{2}$x+lnx的導數(shù)為y′=-$\frac{1}{2}$+$\frac{1}{x}$,
可得切線的斜率為-$\frac{1}{2}$+$\frac{1}{m}$=$\frac{1}{2}$,
解得m=1,n=$\frac{1}{2}$+b,
即有-$\frac{1}{2}$+ln1=$\frac{1}{2}$+b,
可得b=-1.
故答案為:-1.
點評 本題考查導數(shù)的運用:求切線的斜率,考查導數(shù)的幾何意義,設出切點和正確求導是解題的關鍵,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{3}$ | B. | 2 | C. | -$\frac{2}{3}$ | D. | -2 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com