12.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,$\overrightarrow{a}$與$\overrightarrow$的夾角為120°.
(1)求(2$\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+3$\overrightarrow$)的值;
(2)當(dāng)實(shí)數(shù)x為何值時,x$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+3$\overrightarrow$垂直.

分析 (1)運(yùn)用向量的數(shù)量積的定義可得$\overrightarrow{a}$•$\overrightarrow$,再由向量的平方即為模的平方,計(jì)算即可得到所求值.
(2)令(x$\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+3$\overrightarrow$)=0,列方程解出x.

解答 解:(1)由題意知:$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$||$\overrightarrow$|cos120°=-3,$\overrightarrow{a}$2=|$\overrightarrow{a}$|2=4,$\overrightarrow$2=|$\overrightarrow$|2=9,
∴(2$\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+3$\overrightarrow$)=2$\overrightarrow{a}$2+5$\overrightarrow{a}$•$\overrightarrow$-3$\overrightarrow$2=8-15-27=-34. …(5分)
(2)∵(x$\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+3$\overrightarrow$)=x$\overrightarrow{a}$2+(3x-1)$\overrightarrow{a}$•$\overrightarrow$-3$\overrightarrow$2=4x-3(3x-1)-27=-5x-24,
又∵x$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$+3$\overrightarrow$垂直,
∴-5x-24=0,
∴解得:x=-$\frac{24}{5}$.…(10分)

點(diǎn)評 本題考查了平面向量的數(shù)量積運(yùn)算,向量垂直與數(shù)量積的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)f(x)=x3+x2+ax+1既有極大值也有極小值,則實(shí)數(shù)a的取值范圍是(-∞,$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若直線y=$\frac{1}{2}$x+b與曲線y=-$\frac{1}{2}$x+lnx相切,則b的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.用綜合法或分析法證明:
(1)如果a,b>0,則lg $\frac{a+b}{2}$≥$\frac{lga+lgb}{2}$;
(2)$\sqrt{6}$+$\sqrt{10}$>2$\sqrt{3}$+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=xlnx-ax2+$\frac{1}{2}$.
(I) 當(dāng)a=$\frac{1}{2}$時,判斷f(x)在其定義上的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個極值點(diǎn)x1,x2,其中x1<x2.求證:
(i)f(x2)>0;
(ii)x1+x2>$\frac{1}{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.過雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左焦點(diǎn)F(-$\frac{{\sqrt{10}}}{2}$,0)作圓(x-$\frac{{\sqrt{10}}}{2}$)2+y2=1的切線,切點(diǎn)在雙曲線上,則雙曲線的離心率等于( 。
A.2$\sqrt{10}$B.$\sqrt{10}$C.$\frac{{\sqrt{10}}}{3}$D.$\frac{{\sqrt{10}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知F是雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn),O是雙曲線C的中心,直線y=$\sqrt{m}$x是雙曲線C的一條漸近線,以線段OF為邊作正三角形AOF,若點(diǎn)A在雙曲線C上,則m的值為( 。
A.3+2$\sqrt{3}$B.3-2$\sqrt{3}$C.3+$\sqrt{3}$D.3-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.2010年上海世博會舉辦時間為2010年5月1日--10月31日.此次世博會福建館招募了60名志愿者,某高校有13人入選,其中5人為中英文講解員,8人為迎賓禮儀,它們來自該校的5所學(xué)院(這5所學(xué)院編號為1、2、3、4、5號),人員分布如圖所示. 若從這13名入選者中隨機(jī)抽出3人.
(1)求這3人所在學(xué)院的編號正好成等比數(shù)列的概率;
(2)求這3人中中英文講解員人數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.給出下列命題:
①命題:“?x∈R,x2+x+1>0”的否定是“?x0∈R,x${\;}_{0}^{2}$+x0+1<0”;
②設(shè)回歸直線方程$\widehat{y}$=2-3x,當(dāng)變量x增加一個單位時,$\widehat{y}$平均增加3個單位;
③已知sin(θ-$\frac{π}{6}$)=$\frac{1}{3}$,則cos($\frac{π}{3}$-2θ)=$\frac{7}{9}$;
④cosα=cosβ成立的一個充分不必要條件是α=2kπ+β(k∈Z).
其中正確命題的個數(shù)為2.

查看答案和解析>>

同步練習(xí)冊答案