19.已知函數(shù)f(x)=log2$\frac{2x^2}{x^2+1}$(x>0),若函數(shù)g(x)=f(x)2+m$|\begin{array}{l}{f(x)}\end{array}|$+2m+3有三個(gè)不同的零點(diǎn),則實(shí)數(shù)m的最大值為( 。
A.$\frac{4}{3}$B.-$\frac{4}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

分析 先判斷函數(shù)f(x)的單調(diào)性和取值范圍,利用換元法,設(shè)|f(x)|=t,則函數(shù)g(x)=f(x)2+m$|\begin{array}{l}{f(x)}\end{array}|$+2m+3有三個(gè)不同的零點(diǎn)轉(zhuǎn)化為對應(yīng)方程有三個(gè)不同的實(shí)數(shù)解,即為t2+mt+2m+3=0有兩個(gè)根,且一個(gè)在(0,1)上,一個(gè)在[1,+∞)上,由此可得結(jié)論.利用根的分布進(jìn)行求解即可.

解答 解:∵$\frac{2x^2}{x^2+1}$=$\frac{2({x}^{2}+1)-2}{{x}^{2}+1}$=2-$\frac{2}{{x}^{2}+1}$,
∴當(dāng)x>0時(shí)y=$\frac{2x^2}{x^2+1}$為增函數(shù),且y=$\frac{2x^2}{x^2+1}$∈(0,2),
則f(x)為增函數(shù),且f(x)∈(-∞,1),
設(shè)t=f(x),則t<1,
則函數(shù)g(x)=f(x)2+m$|\begin{array}{l}{f(x)}\end{array}|$+2m+3有三個(gè)不同的零點(diǎn),等價(jià)為y=t2+m|t|+2m+3在t<1時(shí)有三個(gè)不同的零點(diǎn),
y=|f(x)|大致圖象如圖所示,
即方程|t|2+m|t|+2m+3=0有三個(gè)不同的實(shí)數(shù)解,即為t2+mt+2m+3=0有兩個(gè)根,且一個(gè)在(0,1)上,一個(gè)在[1,+∞)上,
設(shè)h(t)=t2+mt+2m+3,
①當(dāng)有一個(gè)根為1時(shí),h(1)=12+m+2m+3=0,$m=-\frac{4}{3}$,此時(shí)另一根為$\frac{1}{3}$適合題意; 
②當(dāng)沒有根為1時(shí),$\left\{\begin{array}{l}h(0)>0\\ h(1)<0\end{array}\right.$,得$\left\{\begin{array}{l}2m+3>0\\{1^2}+m+2m+3<0\end{array}\right.$,
∴$-\frac{3}{2}<m<-\frac{4}{3}$,
綜上-$\frac{3}{2}$<m≤-$\frac{4}{3}$;
∴實(shí)數(shù)m的最大值為的取值范圍為-$\frac{4}{3}$;
故選:B.

點(diǎn)評 本題考查了復(fù)合函數(shù)的應(yīng)用及方程的根與函數(shù)的零點(diǎn)的關(guān)系應(yīng)用,考查運(yùn)算能力,利用數(shù)形結(jié)合以及換元法和轉(zhuǎn)化法是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)M,N是拋物線C:y2=2px(p>0)上任意兩點(diǎn),點(diǎn)E的坐標(biāo)為(-λ,0)(λ≥0),若$\overrightarrow{EM}$$•\overrightarrow{EN}$的最小值為0,則λ=$\frac{1}{2}$p.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在Rt△ABC中,∠A為直角,且AB=3,BC=5,若在三角形ABC內(nèi)任取一點(diǎn),則該點(diǎn)到三個(gè)定點(diǎn)A,B,C的距離不小于1的概率是( 。
A.$\frac{π}{6}$B.1-$\frac{π}{6}$C.$\frac{π}{12}$D.1-$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=4sin(2x+$\frac{π}{6}$),x∈R,則下列命題正確的是(  )
A.f(x)在區(qū)間[0,$\frac{π}{2}$]內(nèi)是增函數(shù)
B.若?x1≠x2,f(x1)=f(x2)=0,則x1-x2必是π的整數(shù)倍
C.f(x)的圖象關(guān)于點(diǎn)(-$\frac{π}{12}$+$\frac{kπ}{2}$,0)(k∈Z)對稱
D.f(x)的圖象關(guān)于直線x=$\frac{π}{12}$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.解不等式$\frac{(x+4a)(x-6a)}{2a+1}$>0(a為常數(shù),a≠-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知實(shí)數(shù)a、b、c滿足$\frac{\sqrt{5}b-c}{5a}$=$\frac{1}{4}$,那么關(guān)于b2與ac的大小關(guān)系的判斷:①b2>ac,②b2=ac,③b2<ac,其中所有可能成立的是( 。
A.B.①②C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.求值:
sin$\frac{5π}{6}$-cos$\frac{π}{3}$+cot$\frac{5π}{4}$+tan(-$\frac{π}{4}$)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.根據(jù)數(shù)列的前幾項(xiàng),寫出下列各數(shù)列的一個(gè)通項(xiàng)公式.
(1)-1,7,-13,19,…;
(2)$\frac{1}{2}$,2,$\frac{9}{2}$,8,$\frac{25}{2}$,…;
(3)0.8,0.88,0.888,…;
(4)$\frac{1}{2}$,$\frac{1}{4}$,-$\frac{5}{8}$,$\frac{13}{16}$,-$\frac{29}{32}$,$\frac{61}{64}$,…;
(5)$\frac{3}{2}$,1,$\frac{7}{10}$,$\frac{9}{17}$,….

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(重點(diǎn)中學(xué)做)已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(diǎn)(3,1),離心率e=$\frac{\sqrt{6}}{3}$
(1)求橢圓C的方程;
(2)分別過橢圓C的四個(gè)頂點(diǎn)作坐標(biāo)軸的垂線,圍成如圖所示的矩形,A,B是所圍成的矩形在x軸上方的兩個(gè)頂點(diǎn).若P,Q是橢圓C上兩個(gè)動點(diǎn),直線OP、OQ與橢圓的另一交點(diǎn)分別為P1、Q1,且直線OP、OQ的斜率之積等于直線OA、0B的斜率之積,試問四邊形PQP1Q1的面積是否為定值?若為定值,求出其值;若不為定值,說明理由(0為坐標(biāo)原點(diǎn)).

查看答案和解析>>

同步練習(xí)冊答案