13.已知函數(shù)f(x)=x2+alnx+1(a∈R).
(1)判斷函數(shù)f(x)的單調(diào)性;
(2)若對于任意的x∈(1,e],任意的a∈(-2,-1),不等式ma-$\frac{1}{2}$f(x)<a2成立,求實數(shù)m的取值范圍.

分析 (Ⅰ)先求出函數(shù)的導數(shù),分類討論,令f'(x)>0,得到函數(shù)f(x)的單調(diào)遞增區(qū)間,令f'(x)<0,得到函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)由題意,ma-$\frac{1}{2}$f(x)<a2成立,2ma-2a2<f(x)min,求出函數(shù)最小值,可得m>a+$\frac{1}{a}$,設h(a)=a+$\frac{1}{a}$,h′(a)=1-$\frac{1}{{a}^{2}}$>0,h(x)在(-2,-1)上單調(diào)遞增,即可求實數(shù)m的取值范圍.

解答 解:(1)f′(x)=$\frac{2{x}^{2}+a}{x}$,x≥0,
a≥0,f′(x)>0,函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
a<0,f′(x)>0,x>$\sqrt{-\frac{a}{2}}$,函數(shù)單調(diào)遞增,單調(diào)增區(qū)間是($\sqrt{-\frac{a}{2}}$,+∞);f′(x)<0,0<x<$\sqrt{-\frac{a}{2}}$,函數(shù)單調(diào)遞增,單調(diào)減區(qū)間是(0,$\sqrt{-\frac{a}{2}}$);
(2)由題意,ma-$\frac{1}{2}$f(x)<a2成立,2ma-2a2<f(x)min,
由(1)知,f(x)在x∈[1,e]上是增函數(shù),
∴f(x)min=f(1)=2,
∴2ma-2a2<2,
∵a∈(-2,-1),
∴m>a+$\frac{1}{a}$,
設h(a)=a+$\frac{1}{a}$,h′(a)=1-$\frac{1}{{a}^{2}}$>0,h(x)在(-2,-1)上單調(diào)遞增,
∴h(x)<h(-1)=-2,
∴m≥-2.

點評 本題考查了函數(shù)的單調(diào)性問題,函數(shù)的最值問題,考查了導數(shù)的應用,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.方程2(log3x)2+log3x-3=0的解是${3}^{-\frac{3}{2}}$,3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.某高中采取分層抽樣的方法從應屆高二學生中按照性別抽出20名學生作為樣本,其選報文科理科的情況如表所示.
  性別
科目
文科25
理科103
(1)畫出列聯(lián)表的等高條形圖,并通過圖形判斷選報文理科與性別是否有關系;(須說明理由)
(2)用獨立性檢驗的方法分析有多大的把握認為該中學的高三學生選報文理科與性別有關?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,且過點A(0,1),
(1)求橢圓的方程;
(2)過點A作兩條相互垂直的直線,分別交橢圓于點M,N(M,N不與點A重合).直線MN是否過定點?若過定點,則求出定點坐標;若不過定點,則請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖是函數(shù)y=f(x)的導函數(shù)f′(x)的圖象,則下面判斷正確的是( 。
A.在區(qū)間(-2,1)上f(x)是增函數(shù)B.在(1,3)上f(x)是減函數(shù)
C.當x=4時,f(x)取極大值D.在(4,5)上f(x)是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若函數(shù)y=x3-3bx+1在區(qū)間(1,2)內(nèi)是減函數(shù),b∈R,則( 。
A.b≤4B.b<4C.b≥4D.b>4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知f(x)=x2+alog2(x2+2)+a2-2有唯一零點,則實數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知圓O的半徑為1,PA,PB為該圓的兩條切線,A,B為兩切點,求$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值( 。
A.2$\sqrt{2}$-3B.2$\sqrt{2}$-1C.2$\sqrt{2}$+3D.2$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某校在高二年級實行選課走班教學,學校為學生提供了多種課程,其中數(shù)學科提供5種不同層次的課程,分別稱為數(shù)學1、數(shù)學2、數(shù)學3、數(shù)學4、數(shù)學5,每個學生只能從這5種數(shù)學課程中選擇一種學習,該校高二年級1800名學生的數(shù)學選課人數(shù)統(tǒng)計如表:
課程數(shù)學1數(shù)學2數(shù)學3數(shù)學4數(shù)學5合計
選課人數(shù)1805405403601801800
為了了解數(shù)學成績與學生選課情況之間的關系,用分層抽樣的方法從這1800名學生中抽取了10人進行分析.
(1)從選出的10名學生中隨機抽取3人,求這3人中至少有2人選擇數(shù)學2的概率;
(2)從選出的10名學生中隨機抽取3人,記這3人中選擇數(shù)學2的人數(shù)為X,選擇數(shù)學1的人數(shù)為Y,設隨機變量ξ=X-Y,求隨機變量ξ的分布列和數(shù)學期望E(ξ).

查看答案和解析>>

同步練習冊答案