17.我國古代名著《九章算術》用“更相減損術”求兩個正整數(shù)的最大公約數(shù)是一個偉大的創(chuàng)舉,這個偉大創(chuàng)舉與古老的算法--“輾轉相除法”實質(zhì)一樣,如圖的程序框圖源于“輾轉相除法”.當輸入a=6102,b=2016時,輸出的a=(  )
A.6B.9C.12D.18

分析 模擬程序框圖的運行過程,該程序執(zhí)行的是歐幾里得輾轉相除法,求出運算結果即可.

解答 解:模擬程序框圖的運行過程,如下;
a=6102,b=2016,
執(zhí)行循環(huán)體,r=54,a=2016,b=54,
不滿足退出循環(huán)的條件,執(zhí)行循環(huán)體,r=18,a=54,b=18,
不滿足退出循環(huán)的條件,執(zhí)行循環(huán)體,r=0,a=18,b=0,
滿足退出循環(huán)的條件r=0,退出循環(huán),輸出a的值為18.
故選:D.

點評 本題考查了程序框圖的應用問題,解題時應模擬程序框圖的運行過程,以便得出正確的答案,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知各項均為正數(shù)的等比數(shù)列{an},a1a2a3=5,a7a8a9=10,則log2(a4a5a6)=( 。
A.$\frac{1}{2}$+log25B.$\frac{1}{2}$+2log25C.$\frac{1}{2}$+log52D.1+log25.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$中,橢圓長軸長是短軸長的$\sqrt{3}$倍,短軸的一個端點與兩個焦點構成的三角形的面積為$\frac{{5\sqrt{2}}}{3}$.
(1)求橢圓C的標準方程;
(2)已知動直線y=k(x+1)與橢圓C相交于A,B兩點,
①若線段AB的中點的橫坐標為$-\frac{1}{2}$,求斜率k的值;
②已知點$M(-\frac{7}{3},0)$,求證:$\overrightarrow{MA}•\overrightarrow{MB}$為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知一個幾何體的三視圖如圖所示,其中正視圖為等腰直角三角形,側視圖與俯視圖均為正方形,那么,該幾何體的外接球的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知α為第三象限角,且f(α)=$\frac{sin(\frac{3π}{2}-α)cos(\frac{π}{2}-α)tan(-α+π)}{sin(\frac{π}{2}+α)tan(2π-α)}$.
(1)化簡f(α);
(2)若α=-$\frac{32}{3}$π,求f(α)的值.
(3)若f(α)=$\frac{2\sqrt{6}}{5}$,求cos(π+α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.設命題甲:|x-1|>2,命題乙:x>3,則甲是乙的必要不充分條件條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.如果實數(shù)x,y滿足條件$\left\{\begin{array}{l}y≤1\\ 2x-y-1≤0\\ x+y-1≥0\end{array}\right.$,則x2+y2的最大值為( 。
A.$\sqrt{2}$B.$\frac{1}{2}$C.1D.2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.極坐標系中,拋物線C的頂點在極點O,對稱軸為極軸,焦點F(1,0).
(I)求拋物線的極坐標方程;
(Ⅱ)A,B在拋物線上,若A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$),求△OAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)是偶函數(shù),當x>0時,f(x)=x+$\frac{m}{x}$,且f(-2)=3,則曲線f(x)在點(1,f(1))處的切線方程為( 。
A.2x-y+1=0B.x-y-4=0C.x+y-2=0D.x+y-4=0

查看答案和解析>>

同步練習冊答案