【題目】設(shè)集合,.
(1)若,求實數(shù)的值;
(2)若,求實數(shù)的范圍.
【答案】(1);(2)或
【解析】
(1)∵∴AB,又B中最多有兩個元素,∴A=B,從而得到實數(shù)的值;(2)求出集合A、B的元素,利用B是A的子集,即可求出實數(shù)a的范圍.
(1)∵∴AB,又B中最多有兩個元素,
∴A=B,
∴x=0,﹣4是方程x2+2(a+1)x+a2﹣1=0的兩個根,
故a=1;
(2)∵A={x|x2+4x=0,x∈R}
∴A={0,﹣4},
∵B={x|x2+2(a+1)x+a2﹣1=0},且BA.
故①B=時,△=4(a+1)2﹣4(a2﹣1)<0,即a<﹣1,滿足BA;
②B≠時,當(dāng)a=﹣1,此時B={0},滿足BA;
當(dāng)a>﹣1時,x=0,﹣4是方程x2+2(a+1)x+a2﹣1=0的兩個根,
故a=1;
綜上所述a=1或a≤﹣1;
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對于任意x∈R都有f(x)+2f(-x)=3cosx-sinx,則函數(shù)f(2x)圖象的對稱中心為( )
A. (kπ-,0)(k∈Z) B. (-,0)(k∈Z)
C. (kπ-,0)(k∈Z) D. (-,0)(k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)求函數(shù)的極值;
(2)若在上為單調(diào)函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一個,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某一電視臺對年齡高于40歲和不高于40歲的人是否喜歡西班牙隊進(jìn)行調(diào)查,40歲以上調(diào)查了50人,不高于40歲調(diào)查了50人,所得數(shù)據(jù)制成如下列聯(lián)表:
不喜歡西班牙隊 | 喜歡西班牙隊 | 總計 | |
40歲以上 | 50 | ||
不高于40歲 | 15 | 35 | 50 |
總計 | 100 |
已知工作人員從所有統(tǒng)計結(jié)果中任取一個,取到喜歡西班牙隊的人的概率為,則有超過________的把握認(rèn)為年齡與西班牙隊的被喜歡程度有關(guān).
參考公式與臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.702 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐,側(cè)面是正三角形,底面為邊長2的菱形,,.
(1)設(shè)平面平面,求證:;
(2)求多面體的體積;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題:
①經(jīng)過定點的直線都可以用方程表示;
②經(jīng)過定點的直線都可以用方程表示;
③不經(jīng)過原點的直線都可以用方程表示;
④經(jīng)過任意兩個不同的點、的直線都可以用方程表示,
其中真命題的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為美化城市環(huán)境,相關(guān)部門需對一半圓形中心廣場進(jìn)行改造出新,為保障市民安全,施工隊對廣場進(jìn)行圍擋施工.如圖,圍擋經(jīng)過直徑的兩端點A,B及圓周上兩點C,D圍成一個多邊形ABPQR,其中AR,RQ,QP,PB分別與半圓相切于點A,D,C,B.已知該半圓半徑OA長30米,∠COD為60°,設(shè)∠BOC為.
(1)求圍擋內(nèi)部四邊形OCQD的面積;
(2)為減少對市民出行的影響,圍擋部分面積要盡可能小.求該圍擋內(nèi)部多邊形ABPQR面積的最小值?并寫出此時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有四個小球,分別寫有“文、明、中、國”四個字,有放回地從中任取一個小球,直到“中”“國”兩個字都取到就停止,用隨機(jī)模擬的方法估計恰好在第三次停止的概率.利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“文、明、中、國”這四個字,以每三個隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):
232 321 230 023 123 021 132 220 001
231 130 133 231 013 320 122 103 233
由此可以估計,恰好第三次就停止的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com