16.已知點P在拋物線y2=4x上,則點P到直線l1:4x-3y+11=0的距離和到l2:x=-1的距離之和的最小值為( 。
A.$\frac{37}{16}$B.3C.2D.$\frac{11}{5}$

分析 如圖所示,過點P分別作PM⊥l1,PN⊥l2,垂足分別為M,N.設(shè)拋物線的焦點為F,由拋物線的定義可得|PN|=|PF|,求|PM|+|PN|轉(zhuǎn)化為求|PM|+|PF|,當(dāng)三點M,P,F(xiàn)共線時,|PM|+|PF|取得最小值.利用點到直線的距離公式即可得出.

解答 解:如圖所示,
過點P分別作PM⊥l1,PN⊥l2,垂足分別為M,N.
設(shè)拋物線的焦點為F(1,0),由拋物線的定義可得|PN|=|PF|,
∴|PM|+|PN|=|PM|+|PF|,當(dāng)三點M,P,F(xiàn)共線時,
|PM|+|PF|取得最小值.
其最小值為點F到直線l1的距離,∴|FM|=$\frac{|4-0+11|}{\sqrt{16+9}}$=3.
故選B.

點評 本題考查了拋物線的定義及其性質(zhì)、三點共線、點到直線的距離公式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=$\frac{1}{xlnx}$(x>0且x≠1),求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=ax+1nx(a∈R),g(x)=ex
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:當(dāng)a=0時,g(x)>f(x)+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)f(x)=ex-e-x-2x,下列結(jié)論正確的是( 。
A.f(2x)min=f(0)B.f(2x)max=f(0)
C.f(2x)在(-∞,+∞)上遞減,無極值D.f(2x)在(-∞,+∞)上遞增,無極值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,正方體ABCD-A1B1C1D1的棱長為$\sqrt{3}$,動點P在對角線BD1上,過點P作垂直于BD1的平面α,記平面α截正方體得到的截面多邊形(含三角形)的周長為y=f(x),設(shè)BP=x,x∈(0,3),關(guān)于函數(shù)y=f(x):
(Ⅰ)下列說法中,正確的是②③
①當(dāng)x∈(1,2)時,截面多邊形為正六邊形;
②函數(shù)f(x)的圖象關(guān)于$x=\frac{3}{2}$對稱;
③任取x1,x2∈[1,2]時,f(x1)=f(x2).
(Ⅱ)函數(shù)y=f(x)單調(diào)區(qū)間為單調(diào)遞增區(qū)間(0,1),單調(diào)遞減區(qū)間(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓${C_1}:\frac{x^2}{2}+{y^2}=1$
(1)求證橢圓C1在其上一點A(x0,y0),A處的切線方程為x0x+2y0y-2=0.
(2)如圖,過橢圓C2:$\frac{x^2}{8}+\frac{y^2}{2}=1$上任意一點P作C1的兩條切線PM和PN,切點分別為M,N,當(dāng)點P在橢圓C2上運動時,是否存在定圓恒與直線MN相切?若存在,求出圓的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ex-$\frac{1}{2}$kx2-2x+2,f′(x)是的導(dǎo)函數(shù).
(1)求f′(x)的單調(diào)區(qū)間;
(2)若k=1,證明:當(dāng)x>0時,f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在四面體P-ABC的四個面中,是直角三角形的面至多有( 。﹤.
A.0個B.1個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且f′(x)<f(x)對于x∈R恒成立,則( 。
A.e2f(-2)>f(0),f(2)>e2f(0)B.e2f(-2)<f(0),f(2)<e2f(0)
C.e2f(-2)>f(0),f(2)<e2f(0)D.e2f(-2)<f(0),f(2)>e2f(0)

查看答案和解析>>

同步練習(xí)冊答案