【題目】某地區(qū)實(shí)施“光盤行動(dòng)”以后,某自助啤酒吧也制定了自己的行動(dòng)計(jì)劃,進(jìn)店的每一位客人需預(yù)交元,啤酒根據(jù)需要自己用量杯量取,結(jié)賬時(shí),根據(jù)每桌剩余酒量,按一定倍率收費(fèi)(如下表),每桌剩余酒量不足升的,按升計(jì)算(如剩余升,記為剩余升).例如:結(jié)賬時(shí),某桌剩余酒量恰好為升,則該桌的每位客人還應(yīng)付元.統(tǒng)計(jì)表明飲酒量與人數(shù)有很強(qiáng)的線性相關(guān)關(guān)系,下面是隨機(jī)采集的組數(shù)據(jù)(其中表示飲酒人數(shù),(升)表示飲酒量):,,,,.
剩余酒量(單位:升) | 升以上(含升) | ||||
結(jié)賬時(shí)的倍率 |
(1)求由這組數(shù)據(jù)得到的關(guān)于的回歸直線方程;
(2)小王約了位朋友坐在一桌飲酒,小王及朋友用量杯共量取了升啤酒,這時(shí),酒吧服務(wù)生對(duì)小王說(shuō),根據(jù)他的經(jīng)驗(yàn),小王和朋友量取的啤酒可能喝不完,可以考慮再邀請(qǐng)位或位朋友一起來(lái)飲酒,會(huì)更劃算.試向小王是否該接受服務(wù)生的建議?
參考數(shù)據(jù):回歸直線的方程是,其中,.
【答案】(1);(2)接受
【解析】
(1)計(jì)算出,,結(jié)合所給數(shù)據(jù),計(jì)算出,進(jìn)而求得,即可求得答案;
(2)小王和位朋友共人大約需要飲酒升,若不再邀請(qǐng)人,則剩余酒量升,酒吧記為剩余升,預(yù)計(jì)需要支付元,結(jié)合已知,即可求得答案.
(1),,
,
,
回歸直線方程為.
(2)小王和位朋友共人大約需要飲酒升,
若不再邀請(qǐng)人,則剩余酒量升,酒吧記為剩余升,
預(yù)計(jì)需要支付元;
若再邀請(qǐng)人,大約需飲酒升,剩余酒量升,
酒吧記為剩余升,預(yù)計(jì)支付元;
若再邀請(qǐng)人,大約需飲酒升,剩余酒量升,
酒吧記為剩余升,預(yù)計(jì)支付元.
應(yīng)該接受建議,且再邀請(qǐng)位朋友更劃算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】眾所周知的“太極圖”,其形狀如對(duì)稱的陰陽(yáng)兩魚互抱在一起,因而也被稱為“陰陽(yáng)魚太極圖”.如圖是放在平面直角坐標(biāo)系中的“太極圖”,整個(gè)圖形是一個(gè)圓形,其中黑色陰影區(qū)域在軸右側(cè)部分的邊界為一個(gè)半圓.給出以下命題:①在太極圖中隨機(jī)取一點(diǎn),此點(diǎn)取自黑色陰影部分的概率是;②當(dāng)時(shí),直線與黑色陰影部分有公共點(diǎn);③當(dāng)時(shí),直線與黑色陰影部分有兩個(gè)公共點(diǎn).其中所有正確結(jié)論的序號(hào)是( )
A.①B.①②C.①③D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,定義為兩點(diǎn)AB的“切比雪夫距離”,又設(shè)點(diǎn)P及上任意一點(diǎn)Q,稱的最小值為點(diǎn)P到直線的“切比雪夫距離”,記作,給出下列三個(gè)命題:
①對(duì)任意三點(diǎn)A、B、C,都有
②已知點(diǎn)P(2,1)和直線,則
③定點(diǎn)動(dòng)點(diǎn)P滿足則點(diǎn)P的軌跡與直線(為常數(shù))有且僅有2個(gè)公共點(diǎn).
其中真命題的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱柱中,底面是正三角形,側(cè)棱底面.D,E分別是邊BC,AC的中點(diǎn),線段與交于點(diǎn)G,且,.
(1)求證:∥平面;
(2)求證:⊥平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面,,,,為中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在點(diǎn),使得?若存在,求的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于集合,,,.集合中的元素個(gè)數(shù)記為.規(guī)定:若集合滿足,則稱集合具有性質(zhì).
(I)已知集合,,寫出,的值;
(II)已知集合,為等比數(shù)列,,且公比為,證明:具有性質(zhì);
(III)已知均有性質(zhì),且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)命題:①設(shè),則是的充要條件;②已知命題、、滿足“或”真,“或”也真,則“或”假;③若,則使得恒成立的的取值范圍為{或};④將邊長(zhǎng)為的正方形沿對(duì)角線折起,使得,則三棱錐的體積為.其中真命題的序號(hào)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:(x﹣a)2+(y﹣2)2=4(a>0)及直線l:x﹣y+3=0.當(dāng)直線l被圓C截得的弦長(zhǎng)為時(shí),求
(Ⅰ)a的值;
(Ⅱ)求過(guò)點(diǎn)(3,5)并與圓C相切的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某隧道設(shè)計(jì)為雙向四車道,車道總寬22米,要求通行車輛限高4.5米,隧道全長(zhǎng)2.5千米,隧道的拱線近似地看成半個(gè)橢圓形狀.
(1)若最大拱高h為6米,則隧道設(shè)計(jì)的拱寬l是多少?
(2)若最大拱高h不小于6米,則應(yīng)如何設(shè)計(jì)拱高h和拱寬l,才能使半個(gè)橢圓形隧道的土方工程量最最小?(半個(gè)橢圓的面積公式為,柱體體積為:底面積乘以高.本題結(jié)果精確到0.1米)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com