【題目】在三棱柱中,底面是正三角形,側(cè)棱底面.D,E分別是邊BC,AC的中點(diǎn),線段與交于點(diǎn)G,且,.
(1)求證:∥平面;
(2)求證:⊥平面;
(3)求二面角的余弦值.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3).
【解析】
(1)證明EG∥AB1.然后利用直線與平面平行的判定定理證明EG∥平面AB1D.
(2)取B1C1的中點(diǎn)D1,連接DD1.建立空間直角坐標(biāo)系D-xyz,通過(guò)向量的數(shù)量積證明BC1⊥DA,BC1⊥DB1.然后證明BC1⊥平面AB1D.
(3)求出平面B1CB的一個(gè)法向量,平面AB1C的一個(gè)法向量,設(shè)二面角A-B1C-B的平面角為θ,利用空間向量的數(shù)量積求解二面角的余弦函數(shù)值即可.
(1)證明:因?yàn)?/span>E為AC中點(diǎn),G為B1C中點(diǎn).所以EG∥AB1.
又因?yàn)?/span>EG平面AB1D,AB1平面AB1D,
所以EG∥平面AB1D.
(2)證明:取B1C1的中點(diǎn)D1,連接DD1.
顯然DA,DC,DD1兩兩互相垂直,如圖,建立空間直角坐標(biāo)系D-xyz,
則D(0,0,0),,B(0,-2,0),,,,C(0,2,0).
所以,,.
又因?yàn)?/span>,,
所以BC1⊥DA,BC1⊥DB1.
又因?yàn)?/span>DA∩DB1=D,所以BC1⊥平面AB1D.
(3)解:顯然平面B1CB的一個(gè)法向量為=(1,0,0).
設(shè)平面AB1C的一個(gè)法向量為:=(x,y,z),
又,,
由得
設(shè)x=1,則,,則.
所以.
設(shè)二面角A-B1C-B的平面角為θ,由圖可知此二面角為銳二面角,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩城市和相距,現(xiàn)計(jì)劃在兩城市外以為直徑的半圓上選擇一點(diǎn)建造垃圾處理場(chǎng),其對(duì)城市的影響度與所選地點(diǎn)到城市的距離有關(guān),對(duì)城和城的總影響度為城和城的影響度之和,記點(diǎn)到城的距離為,建在處的垃圾處理場(chǎng)對(duì)城和城的總影響度為,統(tǒng)計(jì)調(diào)查表明:垃圾處理場(chǎng)對(duì)城的影響度與所選地點(diǎn)到城的距離的平方成反比,比例系數(shù)為4,對(duì)城的影響度與所選地點(diǎn)到城的距離的平方成反比,比例系數(shù)為,當(dāng)垃圾處理場(chǎng)建在的中點(diǎn)時(shí),對(duì)城和城的總影響度為0.065;
(1)將表示成的函數(shù);
(2)判斷上是否存在一點(diǎn),使建在此處的垃圾處理場(chǎng)對(duì)城和城的總影響度最小?若存在,求出該點(diǎn)到城的距離;若不存在,說(shuō)明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著改革開(kāi)放的不斷深入,祖國(guó)不斷富強(qiáng),人民的生活水平逐步提高,為了進(jìn)一步改善民生,年月日起我國(guó)實(shí)施了個(gè)人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個(gè)稅起征點(diǎn)為元;(2)每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專項(xiàng)附加扣除;(3)專項(xiàng)附加扣除包括①贍養(yǎng)老人費(fèi)用②子女教育費(fèi)用③繼續(xù)教育費(fèi)用④大病醫(yī)療費(fèi)用等,其中前兩項(xiàng)的扣除標(biāo)準(zhǔn)為:①贍養(yǎng)老人費(fèi)用:每月扣除元②子女教育費(fèi)用:每個(gè)子女每月扣除元
新個(gè)稅政策的稅率表部分內(nèi)容如下:
級(jí)數(shù) | 一級(jí) | 二級(jí) | 三級(jí) | 四級(jí) | |
每月應(yīng)納稅所得額(含稅) | 不超過(guò)元的部分 | 超過(guò)元至元的部分 | 超過(guò)元至元的部分 | 超過(guò)元至元的部分 | |
稅率 |
(1)現(xiàn)有李某月收入元,膝下有一名子女,需要贍養(yǎng)老人,(除此之外,無(wú)其它專項(xiàng)附加扣除)請(qǐng)問(wèn)李某月應(yīng)繳納的個(gè)稅金額為多少?
(2)現(xiàn)收集了某城市名年齡在歲到歲之間的公司白領(lǐng)的相關(guān)資料,通過(guò)整理資料可知,有一個(gè)孩子的有人,沒(méi)有孩子的有人,有一個(gè)孩子的人中有人需要贍養(yǎng)老人,沒(méi)有孩子的人中有人需要贍養(yǎng)老人,并且他們均不符合其它專項(xiàng)附加扣除(受統(tǒng)計(jì)的人中,任何兩人均不在一個(gè)家庭).若他們的月收入均為元,試求在新個(gè)稅政策下這名公司白領(lǐng)的月平均繳納個(gè)稅金額為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=2BC=2,點(diǎn)M為DC的中點(diǎn),將△ADM沿AM折起,使得平面△ADM⊥平面ABCM.
(1)求證:AD⊥BM;
(2)求點(diǎn)C到平面BDM的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將紅、黑、藍(lán)、白5張紙牌(其中白紙牌有2張)隨機(jī)分發(fā)給甲、乙、丙、丁4個(gè)人,每人至少分得1張,則下列兩個(gè)事件為互斥事件的是( )
A. 事件“甲分得1張白牌”與事件“乙分得1張紅牌”
B. 事件“甲分得1張紅牌”與事件“乙分得1張藍(lán)牌”
C. 事件“甲分得1張白牌”與事件“乙分得2張白牌”
D. 事件“甲分得2張白牌”與事件“乙分得1張黑牌”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年3月2日,昌平 “回天”地區(qū)開(kāi)展了種不同類型的 “三月雷鋒月,回天有我”社會(huì)服務(wù)活動(dòng). 其中有種活動(dòng)既在上午開(kāi)展、又在下午開(kāi)展, 種活動(dòng)只在上午開(kāi)展,種活動(dòng)只在下午開(kāi)展 . 小王參加了兩種不同的活動(dòng),且分別安排在上、下午,那么不同安排方案的種數(shù)是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)實(shí)施“光盤行動(dòng)”以后,某自助啤酒吧也制定了自己的行動(dòng)計(jì)劃,進(jìn)店的每一位客人需預(yù)交元,啤酒根據(jù)需要自己用量杯量取,結(jié)賬時(shí),根據(jù)每桌剩余酒量,按一定倍率收費(fèi)(如下表),每桌剩余酒量不足升的,按升計(jì)算(如剩余升,記為剩余升).例如:結(jié)賬時(shí),某桌剩余酒量恰好為升,則該桌的每位客人還應(yīng)付元.統(tǒng)計(jì)表明飲酒量與人數(shù)有很強(qiáng)的線性相關(guān)關(guān)系,下面是隨機(jī)采集的組數(shù)據(jù)(其中表示飲酒人數(shù),(升)表示飲酒量):,,,,.
剩余酒量(單位:升) | 升以上(含升) | ||||
結(jié)賬時(shí)的倍率 |
(1)求由這組數(shù)據(jù)得到的關(guān)于的回歸直線方程;
(2)小王約了位朋友坐在一桌飲酒,小王及朋友用量杯共量取了升啤酒,這時(shí),酒吧服務(wù)生對(duì)小王說(shuō),根據(jù)他的經(jīng)驗(yàn),小王和朋友量取的啤酒可能喝不完,可以考慮再邀請(qǐng)位或位朋友一起來(lái)飲酒,會(huì)更劃算.試向小王是否該接受服務(wù)生的建議?
參考數(shù)據(jù):回歸直線的方程是,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,四邊形為矩形,,均為等邊三角形,,.
(1)過(guò)作截面與線段交于點(diǎn),使得平面,試確定點(diǎn)的位置,并予以證明;
(2)在(1)的條件下,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某銷售公司在當(dāng)?shù)?/span>、兩家超市各有一個(gè)銷售點(diǎn),每日從同一家食品廠一次性購(gòu)進(jìn)一種食品,每件200元,統(tǒng)一零售價(jià)每件300元,兩家超市之間調(diào)配食品不計(jì)費(fèi)用,若進(jìn)貨不足食品廠以每件250元補(bǔ)貨,若銷售有剩余食品廠以每件150回收.現(xiàn)需決策每日購(gòu)進(jìn)食品數(shù)量,為此搜集并整理了、兩家超市往年同期各50天的該食品銷售記錄,得到如下數(shù)據(jù):
銷售件數(shù) | 8 | 9 | 10 | 11 |
頻數(shù) | 20 | 40 | 20 | 20 |
以這些數(shù)據(jù)的頻數(shù)代替兩家超市的食品銷售件數(shù)的概率,記表示這兩家超市每日共銷售食品件數(shù),表示銷售公司每日共需購(gòu)進(jìn)食品的件數(shù).
(1)求的分布列;
(2)以銷售食品利潤(rùn)的期望為決策依據(jù),在與之中選其一,應(yīng)選哪個(gè)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com