已知線段AB的端點(diǎn)B的坐標(biāo)是(4,3),端點(diǎn)A在圓(x+1)2+y2=4上運(yùn)動(dòng),求線段AB的中點(diǎn)軌跡方程.

解:圓(x+1)2+y2=4的圓心為P(-1,0),半徑長(zhǎng)為2,(4分)
線段AB中點(diǎn)為M(x,y)(5分)
取PB中點(diǎn)N,其坐標(biāo)為(,),即N(,)(7分)
∵M(jìn)、N為AB、PB的中點(diǎn),
∴MN∥PA且MN=PA=1.(9分)
∴動(dòng)點(diǎn)M的軌跡為以N為圓心,半徑長(zhǎng)為1的圓.
所求軌跡方程為:(12分)
分析:利用M、N為AB、PB的中點(diǎn),根據(jù)三角形中位線定理得出:MN∥PA且MN=PA=1,從而動(dòng)點(diǎn)M的軌跡為以N為圓心,半徑長(zhǎng)為1的圓.最后寫出其軌跡方程即可.
點(diǎn)評(píng):本題考查軌跡方程,利用的是定義法,定義法是若動(dòng)點(diǎn)軌跡的條件符合某一基本軌跡的定義(如橢圓、雙曲線、拋物線、圓等),可用定義直接探求.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知線段AB的端點(diǎn)B的坐標(biāo)是(4,3),端點(diǎn)A在圓(x+1)2+y2=4上運(yùn)動(dòng),求線段AB的中點(diǎn)軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知線段AB的端點(diǎn)B的坐標(biāo)為(4,3),端點(diǎn)A在圓(x+1)2+y2=4上運(yùn)動(dòng),求線段AB的中點(diǎn)M的軌跡方程,并說(shuō)明M的軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知線段AB的端點(diǎn)B的坐標(biāo)為(1,3),端點(diǎn)A在圓C:(x+1)2+y2=4上運(yùn)動(dòng).
(1)求線段AB的中點(diǎn)M的軌跡;
(2)過(guò)B點(diǎn)的直線L與圓C有兩個(gè)交點(diǎn)A,D.當(dāng)CA⊥CD時(shí),求L的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知線段AB的端點(diǎn)B的坐標(biāo)是(3,4),端點(diǎn)A在圓(x+2)2+(y-1)2=2上運(yùn)動(dòng),則線段AB的中點(diǎn)M的軌跡方程是
(2x-1)2+(2y-5)2=2
(2x-1)2+(2y-5)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知線段AB的端點(diǎn)B的坐標(biāo)是(-1,0),端點(diǎn)A在圓(x-7)2+y2=16上運(yùn)動(dòng),
(1)求線段AB中點(diǎn)M的軌跡方程;
(2)點(diǎn)C(2,a),若過(guò)點(diǎn)C且在兩坐標(biāo)軸上截距相等的直線與圓相切,求a的值及切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案