【題目】已知函數(shù),不等式對恒成立.
(1)求函數(shù)的極值和實數(shù)的值;
(2)已知函數(shù),,其中為自然對數(shù)的底數(shù).若存在,使得,求實數(shù)的取值范圍.
【答案】(1),不存在極小值;。(2)。
【解析】
(1)利用導數(shù)對求導,由單調(diào)區(qū)間求得函數(shù)的極值. 對不等式兩邊取以為底的對數(shù),化簡為的形式,根據(jù)前面所求的單調(diào)區(qū)間求得的值.(2)將表達式代入不等式左邊,構(gòu)造函數(shù),對分成,兩類,通過函數(shù)的導數(shù),討論函數(shù)的單調(diào)性,利用函數(shù)的最小值為負數(shù),求得的取值范圍.
(1),則時,,時,,
故在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,
故,不存在極小值.
顯然,不合題意.
當時,由得,
則有,
故依題意知對恒成立.
當時,取得最大值,故.
當時,取得最大值,故,故.
綜上得.
(2)設,
則.
①當時,,,,
所以不存在使得成立.故不合題意.
②當時, ,
因為,所以,,所以在恒成立,
故在上單調(diào)遞減, ,
則依題意有,
解之得,
故的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的導函數(shù)是偶函數(shù),若方程在區(qū)間(其中為自然對數(shù)的底)上有兩個不相等的實數(shù)根,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)觀測,某公路段在某時段內(nèi)的車流量(千輛/小時)與汽車的平均速度(千米/小時)之間有函數(shù)關系:.
(1)在該時段內(nèi),當汽車的平均速度為多少時車流量最大?最大車流量為多少?(精確到0.01)
(2)為保證在該時段內(nèi)車流量至少為10千輛/小時,則汽車的平均速度應控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)某電子商務平臺的調(diào)查統(tǒng)計顯示,參與調(diào)查的1 000位上網(wǎng)購物者的年齡情況如圖所示.
(1)已知[30,40),[40,50),[50,60)三個年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,求的值;
(2)該電子商務平臺將年齡在[30,50)內(nèi)的人群定義為高消費人群,其他年齡段的人群定義為潛在消費人群,為了鼓勵潛在消費人群的消費,該平臺決定發(fā)放代金券,高消費人群每人發(fā)放50元的代金券,潛在消費人群每人發(fā)放100元的代金券,現(xiàn)采用分層抽樣的方式從參與調(diào)查的1 000位上網(wǎng)購物者中抽取10人,并在這10人中隨機抽取3人進行回訪,求此3人獲得代金券總和(單位:元)的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
()若是函數(shù)的一個極值點,求實數(shù)的值.
()設,當時,函數(shù)的圖象恒不在直線的上方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4,極坐標與參數(shù)方程
已知在平面直角坐標系中,為坐標原點,曲線(為參數(shù)),在以平面直角坐標系的原點為極點,軸的正半軸為極軸,取相同單位長度的極坐標系中,直線的極坐標方程為.
(1)求曲線的普通方程和直線的直角坐標方程;
(2)直線與軸的交點,經(jīng)過點的直線與曲線交于兩點,若,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一臺還可以用的機器由于使用的時間較長,它按不同的轉(zhuǎn)速生產(chǎn)出來的某機械零件有一些會有缺陷,每小時生產(chǎn)有缺陷零件的多少隨機器運轉(zhuǎn)的速率而變化,下表為抽樣試驗結(jié)果:
轉(zhuǎn)速x(轉(zhuǎn)/秒) | 16 | 14 | 12 | 8 |
每小時生產(chǎn)有缺陷的零件數(shù)y(件) | 11 | 9 | 8 | 5 |
(1)畫出散點圖;
(2)如果y與x有線性相關的關系,求回歸直線方程;
(3)若實際生產(chǎn)中,允許每小時生產(chǎn)的產(chǎn)品中有缺陷的零件最多為10個,那么機器的運轉(zhuǎn)速度應控制在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圖1是由矩形和菱形組成的一個平面圖形,其中, ,將其沿折起使得與重合,連結(jié),如圖2.
(1)證明圖2中的四點共面,且平面平面;
(2)求圖2中的四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com