【題目】選修4-4,極坐標(biāo)與參數(shù)方程

已知在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),曲線為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同單位長(zhǎng)度的極坐標(biāo)系中,直線的極坐標(biāo)方程為

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)直線軸的交點(diǎn),經(jīng)過點(diǎn)的直線與曲線交于兩點(diǎn),若,求直線的傾斜角.

【答案】(1)曲線的普通方程為,直線的直角坐標(biāo)方程為.

(2).

【解析】

(1)對(duì)曲線的參數(shù)方程兩邊平方后相加,可求得直角坐標(biāo)方程.對(duì)直線的極坐標(biāo)方程,展開后直接利用極轉(zhuǎn)直的公式進(jìn)行轉(zhuǎn)化.(2)設(shè)出直線的參數(shù)方程,聯(lián)立直線與曲線的方程得,利用參數(shù)的幾何意義列出的方程,由此求得直線的斜率,進(jìn)而求得傾斜角的值.

(1)曲線的普通方程為

直線的直角坐標(biāo)方程為.

(2)點(diǎn)的坐標(biāo)為.設(shè)直線的參數(shù)方程為為參數(shù),為傾斜角),聯(lián)立直線與曲線的方程得:.

設(shè)的參數(shù)分別為,則

.

且滿足,故直線的傾斜解是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在人群流量較大的街道,有一中年人吆喝送錢,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:

摸球方法:從袋中隨機(jī)摸出3個(gè)球,若摸得同一顏色的3個(gè)球,攤主送給摸球者5元錢;若摸得非同一顏色的3個(gè)球,摸球者付給攤主1元錢.

1)摸出的3個(gè)球?yàn)榘浊虻母怕适嵌嗌伲?

2)摸出的3個(gè)球?yàn)?/span>2個(gè)黃球1個(gè)白球的概率是多少?

3)假定一天中有100人次摸獎(jiǎng),試從概率的角度估算一下這個(gè)攤主一個(gè)月(按30天計(jì))能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)與點(diǎn)都在橢圓上,且的左集點(diǎn)為,過點(diǎn)的直線交橢圓兩點(diǎn).

1)求的方程;

2)若以為直徑的圓經(jīng)過點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的說法正確的是( )

A. ,使得成立.

B. 命題:任意,都有,則:存在,使得

C. 命題“若,則”的逆命題為真命題.

D. 若數(shù)列是等比數(shù)列,的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),不等式對(duì)恒成立.

(1)求函數(shù)的極值和實(shí)數(shù)的值;

(2)已知函數(shù),,其中為自然對(duì)數(shù)的底數(shù).若存在,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機(jī)賣場(chǎng)對(duì)市民進(jìn)行國(guó)產(chǎn)手機(jī)認(rèn)可度的調(diào)查,隨機(jī)抽取名市民,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)和頻數(shù)分布表和頻率分布直線圖如下:

分組(歲)

頻數(shù)

合計(jì)

(1)求頻率分布表中、的值,并補(bǔ)全頻率分布直方圖;

(2)在抽取的這名市民中,按年齡進(jìn)行分層抽樣,抽取人參加國(guó)產(chǎn)手機(jī)用戶體驗(yàn)問卷調(diào)查,現(xiàn)從這人中隨機(jī)選取人各贈(zèng)送精美禮品一份,設(shè)這名市民中年齡在內(nèi)的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)設(shè),求的值;

(2)已知cos(75°+α),且﹣180°<α<﹣90°,求cos(15°﹣α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享助力單車”在很多城市相繼出現(xiàn).某“共享助力單車”運(yùn)營(yíng)公司為了解某地區(qū)用戶對(duì)該公司所提供的服務(wù)的滿意度,隨機(jī)調(diào)查了100名用戶,得到用戶的滿意度評(píng)分(滿分10分),現(xiàn)將評(píng)分分為5組,如下表:

組別

滿意度評(píng)分

[0,2)

[2,4)

[4,6)

[6,8)

[8,10]

頻數(shù)

5

10

a

32

16

頻率

0.05

b

0.37

c

0.16

(1)求表格中的a,b,c的值;

(2)估計(jì)用戶的滿意度評(píng)分的平均數(shù);

(3)若從這100名用戶中隨機(jī)抽取25人,估計(jì)滿意度評(píng)分低于6分的人數(shù)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)時(shí)都取得極值.

(1)求的值與函數(shù)的單調(diào)區(qū)間;

(2)若對(duì),不等式恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案