20.已知平面區(qū)域D={(x,y)|$\left\{\begin{array}{l}{x-4y+3≤0}\\{3x+5y-25≤0}\\{x≥1}\end{array}\right.$},Z=$\frac{y}{x+2}$.若命題“?(x,y)∈D,Z≥m”為真命題,則實數(shù)m的最大值為( 。
A.$\frac{22}{15}$B.$\frac{2}{7}$C.$\frac{1}{3}$D.$\frac{1}{4}$

分析 由已知,即求Z的最小值,利用數(shù)形結(jié)合的思想求Z的最大值即可.

解答 解:由題意命題“?(x,y)∈D,Z≥m”為真命題即求Z的最小值,平面區(qū)域如圖:Z=$\frac{y}{x+2}$表示區(qū)域內(nèi)的點與定點(-2,0)連接直線的斜率,所以與n鄰居的直線斜率最小,由$\left\{\begin{array}{l}{x-4y+3=0}\\{3x+5y-25=0}\end{array}\right.$得到N(5,2),所以最小值為$\frac{2}{5+2}=\frac{2}{7}$,
所以實數(shù)m≤$\frac{2}{7}$,所以M的最大值為$\frac{2}{7}$;
故選:B.

點評 本題考查了簡單線性規(guī)劃問題以及全稱命題求參數(shù)范圍;關(guān)鍵是正確求出Z的最小值,利用了數(shù)形結(jié)合的思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某公路段在某一時刻內(nèi)監(jiān)測到的車速頻率分布直方圖如圖所示.
(1)求縱坐標中h的值及第三個小長方形的面積;
(2)求平均車速$\overline{v}$的估計值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.圓心為(0,1)且半徑為2的圓的方程為x2+(y-1)2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知實數(shù)x,y滿足的約束條件$\left\{\begin{array}{l}x-2y+2≥0\\ 3x-2y-3≤0\\ x+y-1≥0\end{array}\right.$,表示的平面區(qū)域為D,若存在點P(x,y)∈D,使x2+y2≥m成立,則實數(shù)m的最大值為( 。
A.$\frac{181}{16}$B.1C.$\frac{9}{13}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知命題p:x2+2x-3>0;命題q:$\frac{1}{3-x}$>1,若“(¬q)∧p”為真,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在斜三棱柱ABC-A1B1C1中,頂點A1在底面ABC內(nèi)的射影恰為線段AB的中點,AA1=2,△ABC為邊長為2的正三角形,N為△ABC的中心,$\overrightarrow{{C}_{1}M}$=2$\overrightarrow{MB}$.
(1)求證:MN∥平面A1B1BA;
(2)求三棱錐B1-A1AM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x、y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-3≥0}\\{x≤2}\end{array}\right.$,若x2+y2的最大值為m,最小值為n,則mx+ny的最小值為22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的兩條漸近線上各取一點P,Q,若以PQ為直徑的圓總過原點,則C的離心率為( 。
A.3B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.前不久,我市各街頭開始出現(xiàn)“高庶葫蘆島”共享單車,滿足了市民的出行需要和節(jié)能環(huán)保的要求,解決了最后一公里的出行難題,市運營中心為了對共享單車進行更好的監(jiān)管,隨機抽取了20位市民對共享單車的情況進行了問卷調(diào)查,并根據(jù)其滿足度評分值制作了莖葉圖如下:

(1)分別計算男性打分的中位數(shù)和女性打分的平均數(shù);
(2)從打分在80分以下(不含80分)的市民中抽取3人,求有女性被抽中的概率.

查看答案和解析>>

同步練習(xí)冊答案