2.已知復(fù)數(shù)z=-3+4i(i是虛數(shù)單位),則復(fù)數(shù)$\frac{\overline z}{1+i}$的虛部為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}i$C.$\frac{1}{2}$D.-$\frac{1}{2}$i

分析 把z=-3+4i代入$\frac{\overline z}{1+i}$,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.

解答 解:∵z=-3+4i,
∴$\frac{\overline z}{1+i}$=$\frac{-3-4i}{1+i}=\frac{(-3-4i)(1-i)}{(1+i)(1-i)}=-\frac{7}{2}-\frac{1}{2}i$,
∴復(fù)數(shù)$\frac{\overline z}{1+i}$的虛部為-$\frac{1}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查共軛復(fù)數(shù)的概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.由1、2、3、4、5、6組成的沒有重復(fù)數(shù)字且1、3都不與5相鄰的六位奇數(shù)的個(gè)數(shù)是288.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知隨機(jī)變量X服從正態(tài)分布N(1,σ2),且P(0<X≤1)=0.4,則且P(X<0)=( 。
A.0.4B.0.1C.0.6D.0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=Asin(ωx+φ)+1(A>0,ω>0,-$\frac{π}{2}$≤φ≤$\frac{π}{2}$)的圖象關(guān)于直線x=$\frac{π}{3}$對(duì)稱,最大值為3,且圖象上相鄰兩個(gè)最高點(diǎn)的距離為π.
(1)求f(x)的最小正周期;
(2)求函數(shù)f(x)的解析式;
(3)若f($\frac{θ}{2}$+$\frac{π}{3}$)=$\frac{7}{5}$,求sinθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為$\frac{\sqrt{2}}{2}$.直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的方程;  
(2)當(dāng)△AMN的面積為$\frac{4\sqrt{7}}{9}$時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|x2+2x-3<0},集合B={x|x-a<0},若A⊆B,則a的取值范圍是( 。
A.a≤1B.a≥1C.a<1D.a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,AB=2,AC=1,∠BAC=120°,AH為△ABC的高線,則$\overrightarrow{AB}$•$\overrightarrow{AH}$=( 。
A.$\frac{\sqrt{21}}{7}$B.$\frac{1}{7}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=x3+mx+$\frac{1}{4}$,g(x)=-lnx,min{a,b}表示a,b中的最小值,若函數(shù)h(x)=min{f(x),g(x)}(x>0)恰有三個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(-$\frac{5}{4}$,-$\frac{3}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)按照下述方法定義:當(dāng)x≤2時(shí),f(x)=-x2+2x;當(dāng)x>2時(shí),f(x)=$\frac{1}{2}$(x-2)2,方程f(x)=$\frac{1}{2}$的所有實(shí)數(shù)根之和是(  )
A.2B.3C.5D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案