11.已知函數(shù)f(x)=x3+mx+$\frac{1}{4}$,g(x)=-lnx,min{a,b}表示a,b中的最小值,若函數(shù)h(x)=min{f(x),g(x)}(x>0)恰有三個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(-$\frac{5}{4}$,-$\frac{3}{4}$).

分析 由已知可得m<0,進(jìn)而可得若h(x)有3個(gè)零點(diǎn),則 $\sqrt{-\frac{m}{3}}$<1,f(1)>0,f( $\sqrt{-\frac{m}{3}}$)<0,解得答案.

解答 解:∵f(x)=x3+mx+$\frac{1}{4}$,
∴f′(x)=3x2+m,
若m≥0,則f′(x)≥0恒成立,函數(shù)f(x)=x3+mx+$\frac{1}{4}$至多有一個(gè)零點(diǎn),
此時(shí)h(x)不可能有3個(gè)零點(diǎn),故m<0,
令f′(x)=0,則x=±$\sqrt{-\frac{m}{3}}$,
∵g(1)=0,
∴若h(x)有3個(gè)零點(diǎn),則 $\sqrt{-\frac{m}{3}}$<1,f(1)>0,f( $\sqrt{-\frac{m}{3}}$)<0,
即$\left\{\begin{array}{l}{-3<m<0}\\{\frac{5}{4}+m>0}\\{\frac{2m}{3}\sqrt{-\frac{m}{3}}+\frac{1}{4}<0}\end{array}\right.$,
解得:m∈(-$\frac{5}{4}$,-$\frac{3}{4}$),
故答案為:(-$\frac{5}{4}$,-$\frac{3}{4}$).

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)零點(diǎn)及零點(diǎn)個(gè)數(shù)的判斷,分類討論思想,函數(shù)和方程的思想,轉(zhuǎn)化思想,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=2cos2ωx+2$\sqrt{3}$sinωxcosωx+m(其中ω>0,m∈R),且函數(shù)f(x)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)是$\frac{π}{6}$,并過點(diǎn)(0,2).
(1)求函數(shù)f(x)的解析式;
(2)若f(x0)=$\frac{11}{5}$,x0∈[${\frac{π}{4}$,$\frac{π}{2}}$],求cos2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知復(fù)數(shù)z=-3+4i(i是虛數(shù)單位),則復(fù)數(shù)$\frac{\overline z}{1+i}$的虛部為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}i$C.$\frac{1}{2}$D.-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知正項(xiàng)等比數(shù)列{an}中,其前n項(xiàng)和為Sn,若a2=2,a6=32,則S100=(  )
A.299-1B.2100+1C.2101-1D.2100-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列說法正確的是( 。
A.頻率是概率
B.隨著試驗(yàn)次數(shù)增加,頻率一般會(huì)越接近概率
C.頻率是客觀存在的與試驗(yàn)次數(shù)無關(guān)
D.隨機(jī)事件的概率總是在(0,1)內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)曲線f(x)=-ex-x(e為自然對(duì)數(shù)的底數(shù))上任意一點(diǎn)處的切線為l1,總存在曲線g(x)=3ax+2cosx上某點(diǎn)處的切線l2,使得l1⊥l2,則實(shí)數(shù)a的取值范圍為( 。
A.[-1,2]B.(3,+∞)C.$[{-\frac{2}{3},\frac{1}{3}}]$D.$[{-\frac{1}{3},\frac{2}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ex+ae-x-2x是奇函數(shù).
(Ⅰ)求實(shí)數(shù)a的值,并判斷f(x)的單調(diào)性;
(Ⅱ)設(shè)函數(shù)g(x)=f(2x)-4bf(x),當(dāng)x>0時(shí),g(x)>0恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.點(diǎn)P在x軸上運(yùn)動(dòng),M,N分別為圓C1:(x-1)2+(y-4)2=1和圓C2:(x-6)2+(y-8)2=4上的動(dòng)點(diǎn),則|PM|+|PN|的最小值為10.

查看答案和解析>>

同步練習(xí)冊(cè)答案