【題目】[選修4-4:坐標系與參數(shù)方程選講]
在直角坐標系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù)).(10分)
(1)若a=﹣1,求C與l的交點坐標;
(2)若C上的點到l距離的最大值為 ,求a.

【答案】
(1)

解:曲線C的參數(shù)方程為 (θ為參數(shù)),化為標準方程是: +y2=1;

a=﹣1時,直線l的參數(shù)方程化為一般方程是:x+4y﹣3=0;

聯(lián)立方程 ,

解得 ,

所以橢圓C和直線l的交點為(3,0)和(﹣ , ).


(2)

l的參數(shù)方程 (t為參數(shù))化為一般方程是:x+4y﹣a﹣4=0,

橢圓C上的任一點P可以表示成P(3cosθ,sinθ),θ∈[0,2π),

所以點P到直線l的距離d為:

d= = ,φ滿足tanφ= ,

又d的最大值dmax= ,

所以|5sin(θ+φ)﹣a﹣4|的最大值為17,

得:5﹣a﹣4=17或﹣5﹣a﹣4=﹣17,

即a=﹣16或a=8.


【解析】(1.)將曲線C的參數(shù)方程化為標準方程,直線l的參數(shù)方程化為一般方程,聯(lián)立兩方程可以求得交點坐標;
(2.)曲線C上的點可以表示成P(3cosθ,sinθ),θ∈[0,2π),運用點到直線距離公式可以表示出P到直線l的距離,再結合距離最大值為 進行分析,可以求出a的值.
【考點精析】通過靈活運用三角函數(shù)的最值,掌握函數(shù),當時,取得最小值為;當時,取得最大值為,則,即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設O為坐標原點,動點M在橢圓C: +y2=1上,過M做x軸的垂線,垂足為N,點P滿足 =
(Ⅰ)求點P的軌跡方程;
(Ⅱ)設點Q在直線x=﹣3上,且 =1.證明:過點P且垂直于OQ的直線l過C的左焦點F.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知半徑為5的圓的圓心在軸上,圓心的橫坐標是整數(shù),且與直線相切.

求:(1)求圓的方程;

2)設直線與圓相交于兩點,求實數(shù)的取值范圍;

3)在(2)的條件下,是否存在實數(shù),使得過點的直線垂直平分弦?

若存在,求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,函數(shù),

.

(1)當時,求的值;

(2)若的最小值為,求實數(shù)的值;

(3)是否存在實數(shù),使函數(shù),有四個不同的零點?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了監(jiān)控某種零件的一條生產線的生產過程,檢驗員每隔30min從該生產線上隨機抽取一個零件,并測量其尺寸(單位:cm).下面是檢驗員在一天內依次抽取的16個零件的尺寸:(12分)

抽取次序

1

2

3

4

5

6

7

8

零件尺寸

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

抽取次序

9

10

11

12

13

14

15

16

零件尺寸

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計算得 = xi=9.97,s= = =0.212, ≈18.439, (xi )(i﹣8.5)=﹣2.78,其中xi為抽取的第i個零件的尺寸,i=1,2,…,16.
(1)求(xi , i)(i=1,2,…,16)的相關系數(shù)r,并回答是否可以認為這一天生產的零件尺寸不隨生產過程的進行而系統(tǒng)地變大或變。ㄈ魘r|<0.25,則可以認為零件的尺寸不隨生產過程的進行而系統(tǒng)地變大或變。
(2)一天內抽檢零件中,如果出現(xiàn)了尺寸在( ﹣3s, +3s)之外的零件,就認為這條生產線在這一天的生產過程可能出現(xiàn)了異常情況,需對當天的生產過程進行檢查.
(ⅰ)從這一天抽檢的結果看,是否需對當天的生產過程進行檢查?
(ⅱ)在( ﹣3s, +3s)之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計這條生產線當天生產的零件尺寸的均值與標準差.(精確到0.01)
附:樣本(xi , yi)(i=1,2,…,n)的相關系數(shù)r= , ≈0.09.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A.1盞
B.3盞
C.5盞
D.9盞

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直角坐標系xoy中,橢圓的離心率為過點.

(1)求橢圓C的方程;

(2)已知點P(2,1),直線與橢圓C相交于A,B兩點,且線段AB被直線OP平分.

①求直線的斜率②若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>0,b>0,a3+b3=2,證明:
(Ⅰ)(a+b)(a5+b5)≥4;
(Ⅱ)a+b≤2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},滿足a1=1,a2=3,an+2=3an+1﹣2an , bn=an+1﹣an
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{an}的通項公式;.

查看答案和解析>>

同步練習冊答案