【題目】某網(wǎng)絡營銷部門為了統(tǒng)計某市網(wǎng)友20151111日在某網(wǎng)店的網(wǎng)購情況,隨機抽查了該市100名網(wǎng)友的網(wǎng)購金額情況,得到如下頻率分布直方圖.

1)估計直方圖中網(wǎng)購金額的中位數(shù);

2)若規(guī)定網(wǎng)購金額超過15千元的顧客定義為網(wǎng)購達人,網(wǎng)購金額不超過15千元的顧客定義為非網(wǎng)購達人;若以該網(wǎng)店的頻率估計全市非網(wǎng)購達人網(wǎng)購達人的概率,從全市任意選取3人,則3人中非網(wǎng)購達人網(wǎng)購達人的人數(shù)之差的絕對值為,求的分布列與數(shù)學期望.

【答案】1;(2.

【解析】試題分析:(1)設中位數(shù)是x,由頻率分布直方圖的性質能估計直方圖中網(wǎng)購金額的中位數(shù).(2)依題意,從全市任取的三人中網(wǎng)購達人的人數(shù)服從B3,03),所以X可能取值為13,分別求出相應的概率,由此能求出X的分布列和數(shù)學期望

試題解析:(1)設中位數(shù)是,則

2)依題意,從全市任取的三人中網(wǎng)購達人的人數(shù)服從,所以可能取值為,且,

所以的分布列為

X

1

3

p

0.63

0.37

數(shù)學期望

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,若acos2 +ccos2 = b,那么a,b,c的關系是(
A.a+b=c
B.a+c=2b
C.b+c=2a
D.a=b=c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)令cn= ,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,E是PC的中點,作EF⊥PB交PB于點F.
(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】天氣預報說,在今后的三天中,每一天下雨的概率均為40%.現(xiàn)采用隨機模擬試驗的方法估計這三天中恰有兩天下雨的概率:先利用計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三個隨機數(shù)作為一組,代表這三天的下雨情況.經(jīng)隨機模擬試驗產(chǎn)生了如下20組隨機數(shù): 907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計,這三天中恰有兩天下雨的概率近似為(
A.0.35
B.0.25
C.0.20
D.0.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】六個面都是平行四邊形的四棱柱稱為平行六面體.已知在平行四邊形ABCD中(如圖1),有AC2+BD2=2(AB2+AD2),則在平行六面體ABCD﹣A1B1C1D1中(如圖2),AC12+BD12+CA12+DB12等于(
A.2(AB2+AD2+AA12
B.3(AB2+AD2+AA12
C.4(AB2+AD2+AA12
D.4(AB2+AD2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AB=4,EC∥FD,F(xiàn)D⊥底面ABCD,M是AB的中點.

(1)求證:平面CFM⊥平面BDF;
(2)若點N為線段CE的中點,EC=2,F(xiàn)D=3,求證:MN∥平面BEF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線Cy2=2px過點P11.過點(0,)作直線l與拋物線C交于不同的兩點MN,過點Mx軸的垂線分別與直線OPON交于點A,B,其中O為原點.

)求拋物線C的方程,并求其焦點坐標和準線方程;

)求證:A為線段BM的中點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)為定義在R上的奇函數(shù),且當x>0時,f(x)=log3x,
(1)求f(x)的解析式;
(2)解不等式f(x)≤2.

查看答案和解析>>

同步練習冊答案