【題目】已知數(shù)列滿足:①();②當(dāng)()時(shí),;③當(dāng)()時(shí),,記數(shù)列的前項(xiàng)和為.
(1)求,,的值;
(2)若,求的最小值;
(3)求證:的充要條件是().
【答案】(1),或1,或1;(2)115;(3)證明見解析.
【解析】
(1)先根據(jù)題中條件,求出,,,再結(jié)合題意,即可得出結(jié)果;
(2)先由題意,得到,當(dāng)時(shí),,由于,所以或,分別求出,,進(jìn)而可求出結(jié)果;
(3)先由,根據(jù)題中條件,求出,證明必要性;再由,求出,證明充分性即可.
(1)因,,且是自然數(shù),;
,,且都是自然數(shù);或;
,,且,或.
(2)由題意可得:,當(dāng)時(shí),
,由于,
所以或,
,,
,,
又,
所以
(3)必要性:若,
則:①
②
①②得:③
由于或或,且或
只有當(dāng)同時(shí)成立時(shí),等式③才成立,
;
充分性:若,由于
所以,
即,,,…,,又
所以對(duì)任意的,都有…(I)
另一方面,由,
所以對(duì)任意的,都有…(II)
,
由于.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,是等邊三角形,D.E分別是BC.AC上兩點(diǎn),且,與AD交于點(diǎn)H,鏈接CH.
(1)當(dāng)時(shí),求的值;
(2)如圖2,當(dāng)時(shí),__________; __________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的最小正周期為,且其圖象關(guān)于直線對(duì)稱,則在下面結(jié)論中正確的個(gè)數(shù)是( )
①圖象關(guān)于點(diǎn)對(duì)稱;
②圖象關(guān)于點(diǎn)對(duì)稱;
③在上是增函數(shù);
④在上是增函數(shù);
⑤由可得必是的整數(shù)倍.
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】博覽會(huì)安排了分別標(biāo)有序號(hào)為“1號(hào)”“2號(hào)”“3號(hào)”的三輛車,等可能隨機(jī)順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計(jì)兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號(hào)大于第一輛車的車序號(hào),就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號(hào)”車的概率分別為P1,P2,則( )
A. P1P2= B. P1=P2= C. P1+P2= D. P1<P2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A. B. C的對(duì)邊分別為a,b,c,己知=b(c-asinC)。
(1)求角A的大。
(2)若b+c=,,求△ABC的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)作直線與兩坐標(biāo)軸分別交于點(diǎn)、.當(dāng)的面積在上變化時(shí),直線條數(shù)的集合為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了增強(qiáng)學(xué)生的記憶力和辨識(shí)力,組織了一場(chǎng)類似《最強(qiáng)大腦》的PK賽,兩隊(duì)各由4名選手組成,每局兩隊(duì)各派一名選手PK,比賽四局.除第三局勝者得2分外,其余各局勝者均得1分,每局的負(fù)者得0分.假設(shè)每局比賽A隊(duì)選手獲勝的概率均為,且各局比賽結(jié)果相互獨(dú)立,比賽結(jié)束時(shí)A隊(duì)的得分高于B隊(duì)的得分的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小店每天以每份5元的價(jià)格從食品廠購進(jìn)若干份食品,然后以每份10元的價(jià)格出售.如果當(dāng)天賣不完,剩下的食品還可以每份1元的價(jià)格退回食品廠處理.
(Ⅰ)若小店一天購進(jìn)16份,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:份,)的函數(shù)解析式;
(Ⅱ)小店記錄了100天這種食品的日需求量(單位:份),整理得下表:
日需求量 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)小店一天購進(jìn)16份這種食品,表示當(dāng)天的利潤(rùn)(單位:元),求的分布列及數(shù)學(xué)期望;
(ii)以小店當(dāng)天利潤(rùn)的期望值為決策依據(jù),你認(rèn)為一天應(yīng)購進(jìn)食品16份還是17份?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)常數(shù).在平面直角坐標(biāo)系中,已知點(diǎn),直線:,曲線:.與軸交于點(diǎn)、與交于點(diǎn).、分別是曲線與線段上的動(dòng)點(diǎn).
(1)用表示點(diǎn)到點(diǎn)距離;
(2)設(shè),,線段的中點(diǎn)在直線,求的面積;
(3)設(shè),是否存在以、為鄰邊的矩形,使得點(diǎn)在上?若存在,求點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com