分析 (1)將a=-3代入f(x),通過討論x的范圍,得到各個區(qū)間上不等式的解集,取并集即可;
(2)根據(jù)絕對值的幾何意義求出集合A,結合B={x|1≤x≤2},且B⊆A,得到關于a的不等式組,解出即可.
解答 解:(1)a=-3時,f(x)=|x-3|+|x-2|≥3,
x≥3時,x-3+x-2≥3,解得:x≥4,
2<x<3時,3-x+x-2=1<3,不成立,
x≤2時,3-x+2-x≥3,解得:x≤1,
故不等式的解集是{x|x≥4或x≤1};
(2)由f(x)≤|x-4|,
得:|x+a|≤|x-4|-|x-2|≤|x-4-x+2|=2,
解得:-2-a≤x≤2-a,
∴A=[-2-a,2-a],而B={x|1≤x≤2},且B⊆A,
∴$\left\{\begin{array}{l}{-2-a≤1}\\{2-a≥2}\end{array}\right.$,解得:-3≤a≤0.
點評 本題考查了解絕對值不等式問題考查分類討論思想,是一道中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,$\frac{3}{2}$) | B. | (-∞,$\frac{9}{4}$) | C. | (-$\frac{3}{2}$,$\frac{9}{4}$) | D. | ($\frac{3}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{25-11\sqrt{3}}}{8}$ | B. | $\frac{{25-9\sqrt{3}}}{8}$ | C. | $\frac{{35-11\sqrt{3}}}{8}$ | D. | $\frac{{35-9\sqrt{3}}}{8}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com