17.已知拋物線C:y2=4x上一點A到焦點F的距離與其到對稱軸的距離之比為5:4,且|AF|>2,則A點到原點的距離為( 。
A.3B.$4\sqrt{2}$C.4D.$4\sqrt{3}$

分析 設(shè)點A的坐標(biāo)為(x1,y1),求出拋物線的準(zhǔn)線方程,結(jié)合拋物線的定義建立方程關(guān)系進行求解即可.

解答 解:設(shè)點A的坐標(biāo)為(x1,y1),拋物線y2=4x的準(zhǔn)線方程為x=-1,
根據(jù)拋物線的定義,點A到焦點的距離等于點A到準(zhǔn)線的距離,
∵點A到焦點F的距離與其到對稱軸的距離之比為5:4,
∴$\frac{{x}_{1}+1}{{|y}_{1}|}$=$\frac{5}{4}$,
∵y12=4x1,
∴解得x1=$\frac{1}{4}$或x1=4,
∵|AF|>2,
∴x1=4,
∴A點到原點的距離為$\sqrt{16+16}$=4$\sqrt{2}$,
故選:B.

點評 本題主要考查拋物線性質(zhì)和定義的應(yīng)用,利用拋物線的定義建立方程關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在研究吸煙與患肺癌的關(guān)系中,通過收集數(shù)據(jù)、整理分析數(shù)據(jù)得“吸煙與患肺癌有關(guān)”的結(jié)論,并且有99%以上的把握認(rèn)為這個結(jié)論是成立的,則下列說法中正確的是(  )
A.100個吸煙者中至少有99人患有肺癌
B.1個人吸煙,那么這人有99%的概率患有肺癌
C.在100個吸煙者中一定有患肺癌的人
D.在100個吸煙者中可能一個患肺癌的人也沒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知偶函數(shù)f(x)和奇函數(shù)g(x)的定義域都是(-4,4),它們在(-4,0]上的圖象分別是圖①和圖②,則關(guān)于x的不等式f(x)•g(x)<0的解集是(-2,0)∪(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.指出下列哪個不是算法( 。
A.解方程2x-6=0的過程是移項和系數(shù)化為1
B.從濟南到溫哥華要先乘火車到北京,再轉(zhuǎn)乘飛機
C.解方程2x2+x-1=0
D.利用公式S=πγ2計算半徑為3的圓的面積是計算π×32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求圓心在(a,$\frac{3π}{2}$),半徑為a的圓的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)向量$\overrightarrow a$=(4,m),$\overrightarrow b$=(1,-2),且$\overrightarrow a$⊥$\overrightarrow b$,則|$\overrightarrow a$+2$\overrightarrow b$|=$2\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.公差為正數(shù)的等差數(shù)列{an}中,a1,a5,a6成等比數(shù)列.則使Sn取得最小值的n為( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.圓(x+2)2+(y-2)2=2的圓心到直線x-y+3=0的距離等 于$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在平面直角坐標(biāo)系xOy中,已知點A(0,3)和直線l:y=2x-4,設(shè)圓C的半徑為1,圓心C在l上.
(1)若圓心C也在直線y=x-1上,過點A作圓C的切線,試求圓C的方程和切線的方程;
(2)若圓心上存在點M使|MA|=2|MO|(O為原點),求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案