精英家教網 > 高中數學 > 題目詳情

【題目】已知定圓,其圓心為,點為圓所在平面內一定點,點為圓上一個動點,若線段的中垂線與直線交于點,則動點的軌跡可能為______.(寫出所有正確的序號)(1)橢圓;(2)雙曲線;(3)拋物線;(4)圓;(5)直線;(6)一個點.

【答案】1)(2)(4)(6)

【解析】

是線段中垂線上的點,可得,對點的位置進行分類討論,利用圓錐曲線的定義即可得出

1)若點在圓外部,,所以點的軌跡是以為焦點的雙曲線;

2)若點在圓上,則點重合,如圖,點點的軌跡為點

3)若點在圓內部且不為圓心,則,,所以點的軌跡是以為焦點的橢圓;

4)若點在圓內部且為圓心,重合時,為半徑的中點,所以點是以為圓心,以為半徑的圓

綜上所述,點的軌跡可能是(1)(2)(4)(6)四種情況

答案為:(1)(2)(4)(6

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】過拋物線的焦點作直線交拋物線于,兩點,若,則的值為( )

A. 10 B. 8 C. 6 D. 4

【答案】B

【解析】

根據過拋物線焦點的弦長公式,利用題目所給已知條件,求得弦長.

根據過拋物線焦點的弦長公式有.故選B.

【點睛】

本小題主要考查過拋物線焦點的弦長公式,即.要注意只有過拋物線焦點的弦長才可以使用.屬于基礎題.

型】單選題
束】
10

【題目】已知橢圓: 的右頂點、上頂點分別為、,坐標原點到直線的距離為,且,則橢圓的方程為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,點在以為直徑的圓上,垂直與圓所在平面,的垂心.

(1)求證:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點P到直線y=﹣4的距離比點P到點A0,1)的距離多3

(1)求點P的軌跡方程;

(2)經過點Q0,2)的動直線l與點P的軌交于MN兩點,是否存在定點R使得∠MRQ=∠NRQ?若存在,求出點R的坐標:若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設命題p:實數滿足不等式;

命題q:關于不等式對任意的恒成立.

1)若命題為真命題,求實數的取值范圍;

2)若“為假命題,為真命題,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若存在實數,對任意實數,使不等式恒成立,則實數的取值范圍為________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018年,教育部發(fā)文確定新高考改革正式啟動,湖南、廣東、湖北等8省市開始實行新高考制度,從2018年下學期的高一年級學生開始實行.為了適應新高考改革,某校組織了一次新高考質量測評,在成績統(tǒng)計分析中,高二某班的數學成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據此解答如下問題:

1)求該班數學成績在的頻率及全班人數;

2)根據頻率分布直方圖估計該班這次測評的數學平均分;

3)若規(guī)定分及其以上為優(yōu)秀,現(xiàn)從該班分數在分及其以上的試卷中任取份分析學生得分情況,求在抽取的份試卷中至少有份優(yōu)秀的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線的參數方程為為參數),以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為

1)求直線的普通方程及曲線的直角坐標方程;

2)設直線與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在上的奇函數有最小正周期4,且時,

(1)判斷并證明上的單調性,并求上的解析式;

(2)當為何值時,關于的方程上有實數解?

查看答案和解析>>

同步練習冊答案