【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,已知每售出一箱酸奶的利潤為50元,當天未售出的酸奶降價處理,以每箱虧損10元的價格全部處理完.若供不應求,可從其它商店調撥,每銷售1箱可獲利30元.假設該超市每天的進貨量為14箱,超市的日利潤為元.為確定以后的訂購計劃,統(tǒng)計了最近50天銷售該酸奶的市場日需求量,其頻率分布表如圖所示.

序號

分組

頻數(shù)(天)

頻率

1

0.16

2

12

3

0.3

4

5

5

0.1

合計

50

1

1)求,,,,的值;

2)求關于日需求量的函數(shù)表達式;

3)以50天記錄的酸奶需求量的頻率作為酸奶需求量發(fā)生的概率,估計日利潤在區(qū)間內的概率.

【答案】(1),,;(2);(30.54

【解析】

(1)根據(jù)頻率,頻數(shù),和樣本容量之間的關系求解即可;

(2)根據(jù)題意,利用分段函數(shù)表示關于的函數(shù)表達式;

(3)根據(jù)(2)中的解析式,計算出,的取值范圍,即可計算概率.

(1),

,

,

,

;

(2)超市的日利潤關于日需求量的函數(shù)表達式為

(3)(2):,,

,解得;

,,

,解得;

所以,,

故所求概率為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)寫出直線的直角坐標方程;

(2)設點的坐標為,若點是曲線截直線所得線段的中點,求的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面ABCD,,,

求證:平面PAC;

若側棱PC上的點F滿足,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有兩個不同的極值點x1,x2,且x1x2

1)求實數(shù)a的取值范圍;

2)求證:x1x2a2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個從生活垃圾中提煉生物柴油的項目.經測算該項目月處理成本(元)與月處理量(噸)之間的函數(shù)關系可以近似地表示為:

,且每處理一噸生活垃圾,可得到能利用的生物柴油價值為200元,若該項目不獲利,政府將給予補貼.

1)當時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損?

2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,圓O的直徑AB=6,C為圓周上一點,BC=3,平面PAC垂直圓O所在平面,直線PC與圓O所在平面所成角為60°,PA⊥PC.

(1)證明:AP⊥平面PBC

(2)求二面角P—AB一C的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點在橢圓,直線x,y軸分別交于A,B兩點,0為坐標原點,且△OAB 的面積的最小值為

(1)求橢圓的離心率;

(2) 設點C、D、F2分別為橢圓的上、下頂點以及右焦點,E 為線段OD 的中點,直線F2E 與橢圓 相交于M、N 兩點,若,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線Cnx22nx+y2=0,(n=12,.從點P(﹣1,0)向曲線Cn引斜率為knkn>0)的切線ln,切點為Pnxnyn.

(1)求數(shù)列{xn}與{yn}的通項公式;

(2)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在中,角所對的邊分別為,且,

(1)求角的大小;

(2)若,求的值。

查看答案和解析>>

同步練習冊答案