圓心在直線x-y-4=0上,且經(jīng)過兩圓x2+y2-4x-3=0,x2+y2-4y-3=0的交點(diǎn)的圓的方程為( )
A.x2+y2-6x+2y-3=0
B.x2+y2+6x+2y-3=0
C.x2+y2-6x-2y-3=0
D.x2+y2+6x-2y-3=0
【答案】分析:求出兩個圓的交點(diǎn),再求出中垂線方程,然后求出圓心坐標(biāo),求出半徑,即可得到圓的方程.
解答:解:x2+y2-4x-3=0,x2+y2-4y-3=0解得兩圓交點(diǎn)為M(,)與N(,
因?yàn)樗髨A經(jīng)過此兩點(diǎn),連接MN,MN即是所求圓的一段弦.
因?yàn)镸N的斜率K1=1
所以其垂直平分線斜率k2=-1;MN中點(diǎn)P坐標(biāo)為(1,1)
所以垂直平分線為y=-x+2
垂直平分線與直線x-y-4=0上的交點(diǎn)即圓圓心,聯(lián)立兩方程
y=-x+2
x-y-4=0
解得x=3,y=-1,所以圓心O點(diǎn)坐標(biāo)為(3,-1)
連接OM即為圓半徑
r==所以所求圓的方程為(x-3)2+(y+1)2=13即:x2+y2-6x+2y-3=0
故選A
點(diǎn)評:本題是基礎(chǔ)題,考查兩個圓的交點(diǎn)的求法;圓的方程的求法:就是求出圓心、求出半徑,考查計(jì)算能力.也可以應(yīng)用圓系方程求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求圓心在直線x-y-4=0上,并且經(jīng)過圓x2+y2+6x-4=0與圓x2+y2+6y-28=0的交點(diǎn)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓心在直線x-y-4=0上,且經(jīng)過兩圓x2+y2-4x-3=0,x2+y2-4y-3=0的交點(diǎn)的圓的方程為(  )
A、x2+y2-6x+2y-3=0B、x2+y2+6x+2y-3=0C、x2+y2-6x-2y-3=0D、x2+y2+6x-2y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求過圓c1:x2+y2+6x-4=0和圓c2x2+y2+6y-28=0的交點(diǎn)且圓心在直線x-y-4=0上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓心在直線x-y-4=0上,且與直線l:4x-3y+6=0相切于點(diǎn)A(3,6),求此圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求圓心在直線x-y-4=0上,并且經(jīng)過C1x2+y2+2x+8y-8=0和圓C2x2+y2-4x-4y-2=0的交點(diǎn)的圓的方程.

查看答案和解析>>

同步練習(xí)冊答案