4.已知$sin({65°+α})=\frac{1}{3}$,則cos(25°-α)的值為( 。
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{{2\sqrt{2}}}{3}$D.$\frac{{2\sqrt{2}}}{3}$

分析 由已知利用誘導(dǎo)公式即可計(jì)算求值.

解答 解:∵$sin({65°+α})=\frac{1}{3}$,
∴cos(25°-α)=cos[90°-(65°+α)]=$sin({65°+α})=\frac{1}{3}$.
故選:B.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若向量$\overrightarrow{m}$=(a,b+c),$\overrightarrow{n}$=(cosC+$\sqrt{3}$sinC,-1)相互垂直.
(1)求角A的大;
(2)若a=$\sqrt{3}$,求△ABC周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對(duì)于函數(shù)f(x),g(x)滿足:對(duì)任意x∈R,都有f(x2-2x+3)=g(x),若關(guān)于x的方程g(x)+sin$\frac{π}{2}$x=0只有5個(gè)根,則這5個(gè)根之和為( 。
A.5B.6C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=ex(x+1),給出以下命題:
①當(dāng)x>0時(shí),f(x)=ex(1-x);
②f(x)有3個(gè)零點(diǎn);
③f(x)>0的解集為(-1,0)∪(1,+∞);
④?x1,x2∈R,都有|f(x1)-f(x2)|≤2,
其中正確命題的序號(hào)是②③④(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=-$\frac{a}$lnx-$\frac{a+1}$(a>0,b>0)的圖象在x=1處的切線與圓x2+y2=1相切,則a+b的最大值是( 。
A.4B.2$\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合$A=\{x|y=\sqrt{2-x}\}$,B={x|x2-2x<0},則A∩B=(  )
A.(0,2]B.(0,2)C.(-∞,2]D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.有三對(duì)師徒共6個(gè)人,站成一排照相,每對(duì)師徒相鄰的站法共有( 。
A.72B.54C.48D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一幾何體的三視圖是如圖所示的三個(gè)直角邊為2的等腰直角三角形,則該幾何體的表面積為( 。
A.8B.4$\sqrt{3}$+4C.4$\sqrt{2}$+4D.6+2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)a∈R,則“a>1”是“a2>|a-2|”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案