A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
分析 由題意可得F,A,B的坐標,設(shè)出直線AE的方程為y=k(x+a),分別令x=-c,x=0,可得M,E的坐標,再由中點坐標公式可得H的坐標,運用三點共線的條件:斜率相等,結(jié)合離心率公式,即可得到所求值.
解答 解:由題意可設(shè)F(-c,0),A(-a,0),B(a,0),
令x=-c,代入橢圓方程可得y=±$\frac{^{2}}{a}$,可得P(-c,±$\frac{^{2}}{a}$).
設(shè)直線AE的方程為y=k(x+a),
令x=-c,可得M(-c,k(a-c)),令x=0,可得E(0,ka),
設(shè)OE的中點為H,可得H(0,$\frac{ka}{2}$),由B,H,M三點共線,可得kBH=kBM,即$\frac{a-c}{a+c}=\frac{1}{2}$,即為a=3c,
可得e=$\frac{c}{a}=\frac{1}{3}$.
故選:A.
點評 本題考查橢圓的離心率的求法,注意運用橢圓的方程和性質(zhì),以及直線方程的運用和三點共線的條件:斜率相等,考查化簡整理的運算能力,屬于中檔題
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{4}$ | B. | $\frac{3}{2}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{\sqrt{5}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8,15,7 | B. | 16,2,2 | C. | 16,3,1 | D. | 12,5,3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | S3最小 | B. | S4最小 | C. | S7最小 | D. | S3,S4最小 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{8}{11}$ | B. | $\frac{3}{11}$ | C. | $\frac{6}{11}$ | D. | $\frac{5}{11}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 必要不充分條件 | B. | 充要條件 | ||
C. | 充分不必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com