分析 (1)利用向量線性運算的幾何意義得出,通過計算${\overrightarrow{C{A}_{1}}}_{\;}$2得出|$\overrightarrow{C{A}_{1}}$|;
(2)通過計算$\overrightarrow{C{C}_{1}}•\overrightarrow{BD}$=0得出CC1⊥BD;
(3)通過計算數(shù)量積證明CA1⊥BD,CA1⊥BC1,于是直線A1C⊥平面C1BD.
解答 解:(1)$\overrightarrow{C{A}_{1}}$=$\overrightarrow{C{C}_{1}}$+$\overrightarrow{CB}+\overrightarrow{CD}$,
${\overrightarrow{C{A}_{1}}}^{2}$=${\overrightarrow{C{C}_{1}}}^{2}$+${\overrightarrow{CB}}^{2}$+${\overrightarrow{CD}}^{2}$+2$\overrightarrow{CB}•\overrightarrow{CD}$+2$\overrightarrow{CB}•\overrightarrow{C{C}_{1}}$+2$\overrightarrow{CD}•\overrightarrow{C{C}_{1}}$
=1+1+1+2×1×1×$\frac{1}{2}$+2×1×1×$\frac{1}{2}$+2×1×1×$\frac{1}{2}$=6,
∴$|{\overrightarrow{C{A_1}}}|=\sqrt{6}$.
證明:(2)∵$\overrightarrow{C{C}_{1}}•\overrightarrow{BD}$=$\overrightarrow{C{C}_{1}}$•($\overrightarrow{CD}-\overrightarrow{CB}$)=$\overrightarrow{C{C}_{1}}$•$\overrightarrow{CD}$-$\overrightarrow{C{C}_{1}}$•$\overrightarrow{CB}$=$1×1×\frac{1}{2}-1×1×\frac{1}{2}$=0,
∴$\overrightarrow{C{C_1}}⊥\overrightarrow{BD}$,
∴CC1⊥BD.
(3)$\overrightarrow{C{A}_{1}}$$•\overrightarrow{BD}$=($\overrightarrow{C{C}_{1}}$+$\overrightarrow{CB}+\overrightarrow{CD}$)•($\overrightarrow{CD}-\overrightarrow{CB}$)
=${\overrightarrow{CD}^2}-\overrightarrow{CB}•\overrightarrow{CD}+\overrightarrow{CB}•\overrightarrow{CD}-{\overrightarrow{CB}^2}+\overrightarrow{C{C_1}}•\overrightarrow{CD}-\overrightarrow{CB}•\overrightarrow{C{C_1}}$
=1-$\frac{1}{2}$+$\frac{1}{2}$-1+$\frac{1}{2}$$-\frac{1}{2}$=0,
∴$\overrightarrow{C{A_1}}⊥\overrightarrow{BD}$,∴CA1⊥BD.
同理可證CA1⊥BC1,
∵BC1?面BDC1,BD?面BDC1,BC1∩BD=B,
∴A1C⊥面C1DB.
點評 本題考查了空間向量在立體幾何中的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1,2} | B. | {0,1,2,3} | C. | {1,2} | D. | {0,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組(單位:歲) | 頻數(shù) | 頻率 |
[20,25) | 5 | 0.05 |
[25,30) | 20 | 0.20 |
[30,35) | ① | 0.350 |
[35,40) | 30 | ② |
[40,45] | 10 | 0.10 |
合計 | 100 | 1.000 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{5}}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com