分析 (Ⅰ)當(dāng)t=1時(shí),f(x)=x2+|x-1|,分類討論求不等式f(x)≥1的解集;
(Ⅱ)設(shè)函數(shù)f(x)在[0,2]上的最小值為h(t),分類討論,即可求h(t)的表達(dá)式.
解答 解(Ⅰ)當(dāng)t=1時(shí),f(x)=x2+|x-1|.
∵f(x)≥1
∴當(dāng)x≥1時(shí),x2+x-1≥1,∴x≥1或x≤-2.
∴x≥1…3分
當(dāng)x<1時(shí),x2-x+1≥1,∴x≥1或x≤0.
∴x≤0…5分
綜上:不等式的解集為{x|x≥1或x≤0}…6分
(Ⅱ)∵f(x)=x2+|x-t|,x∈[0,2]
∴當(dāng)t≥2時(shí),f(x)=x2-x+t,h(t)=f($\frac{1}{2}$)=t-$\frac{1}{4}$…7分
∴當(dāng)t≤0時(shí),(x)=x2+x-t,h(t)=f(0)=-t…8分
∴當(dāng)0<t<2時(shí),f(x)=$\left\{\begin{array}{l}{{x}^{2}-x+t,x∈[0,t]}\\{{x}^{2}+x-t,x∈[t,2]}\end{array}\right.$,
∴h(t)=$\left\{\begin{array}{l}{t-\frac{1}{4},\frac{1}{2}≤t<2}\\{{t}^{2},0<t<\frac{1}{2}}\end{array}\right.$…10分
∴h(t)=$\left\{\begin{array}{l}{-t,t≤0}\\{{t}^{2},0<t≤\frac{1}{2}}\\{t-\frac{1}{4},t>\frac{1}{2}}\end{array}\right.$…12分
點(diǎn)評(píng) 本題考查絕對(duì)值不等式的解法,考查函數(shù)的最小值,考查分類討論的數(shù)學(xué)思想,正確分類討論是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 10 | C. | 11 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2x-1 | B. | y=-x+1 | C. | y=x-1 | D. | y=-2x+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com