分析 根據(jù)不等式的關(guān)系轉(zhuǎn)化為兩個(gè)函數(shù)的大小關(guān)系,構(gòu)造函數(shù)g(x)=kx,h(x)=-(3x+1)ex+1,由題意得g(x)≤h(x)的整數(shù)解只有1個(gè),求出h′(x)、判斷出h(x)的單調(diào)性畫出圖象,利用圖象和條件列出不等式組,求出實(shí)數(shù)k的取值范圍.
解答 解:由f(x)≤0得(3x+1)ex+1+kx≤0,
即kx≤-(3x+1)ex+1,
設(shè)g(x)=kx,h(x)=-(3x+1)ex+1,
h′(x)=-(3ex+1+(3x+1)ex+1)=-(3x+4)ex+1,
由h′(x)>0得:-(3x+4)>0,即x<-$\frac{4}{3}$,
由h′(x)<0得:-(3x+4)<0,即x>-$\frac{4}{3}$,
即當(dāng)x=-$\frac{4}{3}$時(shí),函數(shù)h(x)取得極大值,
由題意知,存在唯一整數(shù)m,使f(m)≤0即g(m)≤h(m),
當(dāng)k≥0時(shí),滿足g(x)≤h(x)的整數(shù)解超過1個(gè),不滿足條件.
當(dāng)-2≤k<0時(shí),要使g(x)≤h(x)的整數(shù)解只有1個(gè),
則$\left\{\begin{array}{l}{h(-1)≥g(-1)}\\{h(-2)<g(-2)}\end{array}\right.$,即$\left\{\begin{array}{l}{2•{e}^{0}≥-k}\\{5•{e}^{-1}<-2k}\end{array}\right.$,解得$-2≤k<-\frac{5}{2e}$,
所以實(shí)數(shù)k的取值范圍是$[-2,-\frac{5}{2e})$,
故答案為:$[-2,-\frac{5}{2e})$.
點(diǎn)評(píng) 本題考查函數(shù)與不等式的應(yīng)用,導(dǎo)數(shù)與函數(shù)單調(diào)性、極值的關(guān)系,以及構(gòu)造函數(shù)法,利用構(gòu)造函數(shù)和數(shù)形結(jié)合解決不等式問題,考查分析、解決問題的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | l | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
性別 休閑方式 | 看電視 | 運(yùn)動(dòng) | 總計(jì) |
女性 | 10 | 10 | 20 |
男性 | 10 | 50 | 60 |
總計(jì) | 20 | 60 | 80 |
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | 4 | 0.10 |
[25,30) | m | p |
合計(jì) | M | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | 4$\sqrt{5}$ | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com