13.根據(jù)下面的要求,求滿足1+2+3+…+n>2016的最小的自然數(shù)n.
(1)完成執(zhí)行該問題的程序框圖;
(2)如圖是解決該問題對應(yīng)的程序語句,請補充完整.

分析 (1)分析題目中的要求,發(fā)現(xiàn)這是一個累加型的問題,故可能用循環(huán)結(jié)構(gòu)來實現(xiàn),在編寫算法的過程中要注意,累加的初始值為0,累加值每一次增加1,退出循環(huán)的條件是累加結(jié)果S>2016,把握住以上要點不難得到正確的算法和流程圖.
(2)根據(jù)流程圖即可得解程序.

解答 解:(1)程序框圖如下:

(2)程序語句如下:
S=0
n=1
DO
  S=S+n
  n=n+1
LOOP UNTIL  S>2016
PRINT n-1
END
(左邊框圖每格(2分),右邊每行1分)

點評 本題主要考查了循環(huán)結(jié)構(gòu),以及利用循環(huán)語句來實現(xiàn)數(shù)值的累加(乘),同時考查了流程圖的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.計算下列各式的值:
(Ⅰ)($\frac{1}{9}$)${\;}^{\frac{1}{2}}}$+(-2)0-($\frac{27}{64}$)${\;}^{-\frac{1}{3}}}$+0.125${\;}^{-\frac{1}{3}}}$;
(Ⅱ)lg500+lg$\frac{8}{5}$-$\frac{1}{2}$lg64-($\frac{1}{3}$)${\;}^{{{log}_3}2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=$\left\{\begin{array}{l}{e^x}-1,({x≤0})\\ 2x-6-lnx,({x>0})\end{array}$的零點個數(shù)是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若樣本x1+1,x2+1,xn+1的平均數(shù)為9,方差為3,則樣本2x1+3,2x2+3,…,2xn+3,的平均數(shù)、方差是( 。
A.23,12B.19,12C.23,18D.19,18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為了解甲、乙兩校高二年級學(xué)生某次期末聯(lián)考物理成績情況,從這兩學(xué)校中分別隨機抽取30名高二年級的物理成績(百分制)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖所示:

(1)若乙校高二年級每位學(xué)生被抽取的概率為0.15,求乙校高二年級學(xué)生總?cè)藬?shù);
(2)根據(jù)莖葉圖,對甲、乙兩校高二年級學(xué)生的物理成績進行比較,寫出兩個統(tǒng)計結(jié)論(不要求計算);
(3)從樣本中甲、乙兩校高二年級學(xué)生物理成績不及格(低于60分為不及格)的學(xué)生中隨機抽取2人,求至少抽到一名乙校學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=(sinx+cosx)2-2sin2x-m在[0,$\frac{π}{2}$]上有兩個零點,則實數(shù)m的取值范圍是[1,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,陰影部分表示的集合是( 。
A.(A∪B)∪(B∪C)B.B∩[∁U(A∪C)]C.(A∪C)∩(∁UB)D.[∁U(A∩C)]∪B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若函數(shù)f(x)=ex+x2-mx,在點(1,f(1))處的斜率為e+1.
(1)求實數(shù)m的值;
(2)求函數(shù)f(x)在區(qū)間[-1,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.三棱柱ABC-A1B1C1中,P、Q分別為側(cè)棱AA1,BB1上的點,且A1P=BQ,則四棱錐C1-APQB與三棱柱ABC-A1B1C1的體積之比是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

同步練習(xí)冊答案