分析 求出A=[m,n],B={x|-2<x<-1或x>1},再由A∪B=(-2,+∞),A∩B=(1,3],求出m,n,由此能求出m+n.
解答 解:∵等式x2+ax+b≤0的解集為A=[m,n],
不等式$\frac{{({x+2})({x+1})}}{x-1}>0$的解集為B,
∴B={x|-2<x<-1或x>1},
∵A∪B=(-2,+∞),A∩B=(1,3],
∴m=-1,n=3,
∴m+n=-1+3=2.
故答案為:2.
點(diǎn)評(píng) 本題考查代數(shù)式和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集、并集、不等式性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2kπ+$\frac{2}{3}$π,2kπ+$\frac{8}{3}$π](k∈Z) | B. | [4kπ+$\frac{2}{3}$π,4kπ+$\frac{8}{3}$π](k∈Z) | ||
C. | [2kπ-$\frac{4}{3}$π,2kπ+$\frac{2}{3}$π](k∈Z) | D. | [4kπ-$\frac{4}{3}$π,4kπ+$\frac{2}{3}$π](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | AB=BC | B. | AB=BC,且AB⊥BC | C. | AB⊥BC | D. | AB=AC,且AB⊥AC |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com