分析 先確定利潤(rùn)函數(shù),再利用求導(dǎo)的方法,即可得到結(jié)論.
解答 解:由于瓶子的半徑為r,所以每瓶飲料的利潤(rùn)是y=f(r)=0.2×$\frac{4}{3}$πr3-0.8πr2=0.8π($\frac{{r}^{3}}{3}$-r2),0<r≤6
令f'(r)=0.8π(r2-2r)=0解得 r=2(r=0舍去)
當(dāng)r∈(0,2)時(shí),f'(r)<0;當(dāng)r∈(2,6)時(shí),f'(r)>0.
當(dāng)半徑r>2時(shí),f'(r)>0它表示f(r)單調(diào)遞增,即半徑越大,利潤(rùn)越高;
當(dāng)半徑r<2時(shí),f'(r)<0它表示f(r)單調(diào)遞減,即半徑越大,利潤(rùn)越低.
(1)半徑為2cm 時(shí),利潤(rùn)最小,這時(shí)f(2)<0,
表示此種瓶?jī)?nèi)飲料的利潤(rùn)還不夠瓶子的成本,此時(shí)利潤(rùn)是負(fù)值.
(2)半徑為6cm時(shí),利潤(rùn)最大.
點(diǎn)評(píng) 本題考查函數(shù)模型的建立,考查導(dǎo)數(shù)知識(shí)的運(yùn)用,確定函數(shù)的模型是解題的關(guān)鍵.同時(shí)考查了分析問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | -5 | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (x-1)2+y2=36 | B. | (x+1)2+y2=36 | C. | x2+(y+1)2=36 | D. | x2+(y-1)2=36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,1) | B. | (0,2) | C. | (-2,0) | D. | (1,3) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com