8.函數(shù)y=$\sqrt{{{log}_{\frac{1}{2}}}(x-1)-1}$的定義域?yàn)椋ā 。?table class="qanwser">A.$(-∞,\frac{3}{2}]$B.$(1,\frac{3}{2})$C.$(1,\frac{3}{2}]$D.$[\frac{3}{2},+∞)$

分析 根據(jù)對數(shù)函數(shù)的定義得到關(guān)于x的不等式組,解出即可.

解答 解:由題意得:
0<x-1≤$\frac{1}{2}$,
解得:1<x≤$\frac{3}{2}$;
故選:C.

點(diǎn)評 本題考察了求函數(shù)的定義域問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.x∈{1,2}是$\sqrt{x-1}$=0的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.求下列函數(shù)的定義域
(1)f(x)=$\frac{5}{{x}^{2}-3x-4}$
(2)f(x)=log(x-1)(2x-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知冪函數(shù)y=x${\;}^{\frac{a-1}{3}}$圖象關(guān)于y軸對稱,定義域?yàn)榉橇銓?shí)數(shù),且在(0,+∞)上為單調(diào)遞減函數(shù),則絕對值最小的整數(shù)a值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在同一平面直角坐標(biāo)系中,將曲線x2-36y2一8x+12=0變成曲線x′2-y′2-4x′+3=0.求滿足條件的伸縮變換.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)常數(shù)a∈R,函數(shù)f(x)=$\frac{{2}^{x}-a}{{2}^{x}+a}$.
(1)若函數(shù)y=f(x)是奇函數(shù),求實(shí)數(shù)a的值;
(2)當(dāng)a>0時,若存在區(qū)間[m,n](m<n),使得函數(shù)f(x)在[m,n]的值域?yàn)閇2m,2n],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在等比數(shù)列{an}中,a1,a9是方程x2+9x+16=0的兩根,若曲線$y=\frac{x^2}{2}-2lnx+1$在點(diǎn)P處的切線的斜率為$k=\frac{1}{4}{a_5}$,則切點(diǎn)P的橫坐標(biāo)xP=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}中a1=1,an+1=$\frac{a_n}{{3{a_n}+1}}$,則a34=( 。
A.$\frac{34}{103}$B.100C.$\frac{1}{100}$D.$\frac{1}{104}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,已知直線1的參數(shù)方程是$\left\{\begin{array}{l}{x=t+3}\\{y=\frac{\sqrt{3}}{3}t+\frac{3\sqrt{3}}{4}}\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程是ρ=$\frac{6cosθ}{1-cos2θ}$,求直線l被曲線C截得的弦長.

查看答案和解析>>

同步練習(xí)冊答案