11.已知F,A分別為雙曲線 $\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的右焦點(diǎn),右頂點(diǎn),過F作x軸的垂線,在第一象限與雙曲線交于點(diǎn)P,AP的延長線與雙曲線的漸近線在第一象限交與點(diǎn)Q,若向量$\overrightarrow{AP}$=(2-$\sqrt{2}$)向量$\overrightarrow{AQ}$,則雙曲線的離心率是$\sqrt{2}$.

分析 求向各個(gè)點(diǎn)的坐標(biāo),結(jié)合$\overrightarrow{AP}$=(2-$\sqrt{2}$)$\overrightarrow{AQ}$,可得:(c-a)=(2-$\sqrt{2}$)($\frac{a(c+a)}{a-b+c}$-a),進(jìn)而化簡得到雙曲線的離心率.

解答 解:∵F,A分別為雙曲線 $\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的右焦點(diǎn),右頂點(diǎn),
∴F點(diǎn)坐標(biāo)為(c,0),A(a,0),
過F作x軸的垂線,在第一象限與雙曲線交于點(diǎn)P,則P點(diǎn)坐標(biāo)為(c,$\frac{^{2}}{a}$),
則AP所在直線方程為:$\frac{x-a}{c-a}=\frac{y}{\frac{^{2}}{a}}$,即y=$\frac{c+a}{a}$(x-a),
聯(lián)立雙曲線 $\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的漸近線方程y=$\frac{a}$x得:
Q點(diǎn)的橫坐標(biāo)為$\frac{a(c+a)}{a-b+c}$,
∵$\overrightarrow{AP}$=(2-$\sqrt{2}$)$\overrightarrow{AQ}$,
∴(c-a)=(2-$\sqrt{2}$)($\frac{a(c+a)}{a-b+c}$-a)=(2-$\sqrt{2}$)$\frac{ab}{a-b+c}$,
∴b2-b(c-a)=(2-$\sqrt{2}$)ab,
∴a+b-c=(2-$\sqrt{2}$)a,
∴b=(1-$\sqrt{2}$)a+c,
∴b2=(3-2$\sqrt{2}$)a2+c2+(2-2$\sqrt{2}$)ac=c2-a2,
∴(4-2$\sqrt{2}$)a2+(2-2$\sqrt{2}$)ac=0,
∴(4-2$\sqrt{2}$)a+(2-2$\sqrt{2}$)c=0,
∴(4-2$\sqrt{2}$)a=(2$\sqrt{2}$-2)c,
∴e=$\frac{c}{a}$=$\frac{4-2\sqrt{2}}{2\sqrt{2}-2}$=$\sqrt{2}$,
故答案為:$\sqrt{2}$

點(diǎn)評 本題考查的知識點(diǎn)是雙曲線的簡單性質(zhì),向量的線性關(guān)系,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.過點(diǎn)(4,-$\sqrt{3}$),且與直線y=-$\frac{\sqrt{3}}{3}$(x-2)垂直的直線斜截式方程為y+$\sqrt{3}$=$\sqrt{3}(x-4)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.將y=sin(2x-$\frac{π}{3}$)的圖象平移φ個(gè)單位后圖象關(guān)于x=$\frac{π}{3}$對稱,則|φ|的最小值=$\frac{π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f($\frac{1}{2}$log${\;}_{\frac{1}{2}}$x)=$\frac{x-1}{x+1}$
(1)求f(x)的解析式;
(2)判斷f(x)的奇偶性;
(3)求滿足f(23-2x)+$\frac{15}{17}$≤0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.己知f(x)=sin($\frac{x}{2}$+$\frac{π}{6}$)+$\frac{1}{2}$.
(1)若f(x)=$\frac{3}{2}$,求cos($\frac{2π}{3}$-x)的值;
(2)將函數(shù)y=f(x)的圖象向右平移$\frac{2π}{3}$個(gè)單位得到y(tǒng)=g(x)的圖象,若函數(shù)y=g(x)-k在[0,$\frac{7π}{3}$]上有零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的左右焦點(diǎn)分別為F1、F2,若雙曲線上一點(diǎn)P滿足|PF1|•|PF2|=55,求點(diǎn)P到焦點(diǎn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.計(jì)算:
(1)2x-4<0;
(2)求2$\sqrt{2}$•3$\sqrt{{2}^{2}}$的值;
(3)lg2+lg5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.與-463°終邊相同的角是(  )
A.157°B.257°C.-157°D.-257°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.記集合A={(x,y)|x2+y2≤16},集合B={(x,y)|x+y-4≤0,(x,y)∈A}表示的平面區(qū)域分別為Ω1,Ω2.若在區(qū)域Ω1內(nèi)任取一點(diǎn)P(x,y),則點(diǎn)P落在區(qū)域Ω2中的概率為$\frac{3π+2}{4π}$.

查看答案和解析>>

同步練習(xí)冊答案