分析 (Ⅰ)以B為原點,BA、BC、BB1分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系B-xyz,利用向量法能證明A1F⊥C1E.
(Ⅱ)VB1-EFB=$\frac{1}{3}$S△BEF•BB1=$\frac{a}{6}$m(a-m)≤$\frac{a3}{24}$,當(dāng)m=$\frac{a}{2}$時,VB1-EFB取最大值,求出平面B1EF的一個法向量和平面BB1E的一個法向量,由此能求出二面角B-B1E-F的正切值.
解答 證明:(Ⅰ)如圖,以B為原點,BA、BC、BB1分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系B-xyz
設(shè)AE=BF=m (0≤m≤a),則E(0,a-m,0),
C1(a,0,a),A1(0,a,a),
F(m,0,0),…(2分)
∴$\overrightarrow{A1F}$=(m,-a,-a),
$\overrightarrow{C1E}$=(-a,a-m,-a),…(4分)
∴$\overrightarrow{A1F}$•$\overrightarrow{C1E}$=-am-a2+am+a2=0,
∴A1F⊥C1E.…(6分)
解:(Ⅱ)∵BB1⊥平面EFB,∴VB1-EFB=$\frac{1}{3}$S△BEF•BB1=$\frac{a}{6}$m(a-m)≤$\frac{a3}{24}$,
當(dāng)且僅當(dāng)m=$\frac{a}{2}$時,VB1-EFB取最大值.…(8分)
此時,E(0,$\frac{a}{2}$,0),F(xiàn)($\frac{a}{2}$,0,0),B1(0,0,a)
$\overrightarrow{{B}_{1}E}$=(0,$\frac{a}{2}$,-a),$\overrightarrow{{B}_{1}F}$=($\frac{a}{2}$,0,-a)
設(shè)平面B1EF的一個法向量為$\overrightarrow{m}$=(x,y,z),
則有$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{{B}_{1}E}=0}\\{\overrightarrow{m}•\overrightarrow{{B}_{1}F}=0}\end{array}\right.$,即$\left\{\begin{array}{l}\frac{a}{2}y-az=0\\ \frac{a}{2}x-az=0\end{array}$
令x=2,則y=2,z=1,得$\overrightarrow{m}$=(2,2,1),
取平面BB1E的一個法向量$\overrightarrow{n}$=(1,0,0),
則cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{2}{3}$…(10分)
二面角B-B1E-F的正切值為$\frac{\sqrt{5}}{2}$.…(12分)
點評 本題考查異面直線垂直的證明,考查二面角的正切值的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 64個 | B. | 72個 | C. | 84個 | D. | 96個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
患病 | 未患病 | 總計 | |
沒服用藥 | 22 | y | 60 |
服用藥 | x | 50 | 60 |
總計 | 32 | t | 120 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com