A. | 4π | B. | 8π | C. | 12π | D. | 16π |
分析 根據(jù)正三棱柱的對稱性,它的外接球的球心在上下底面中心連線段的中點.再由正三角形的性質(zhì)和勾股定理,結(jié)合題中數(shù)據(jù)算出外接球半徑,用球表面積公式即可算出該球的表面積.
解答 解:設(shè)三棱柱ABC-A′B′C′的上、下底面的中心分別為O、O′,
根據(jù)圖形的對稱性,可得外接球的球心在線段OO′中點O1,
∵OA=$\frac{\sqrt{3}}{3}$AB=1,OO1=$\frac{1}{2}$AA′=1
∴O1A=$\sqrt{2}$
因此,正三棱柱的外接球半徑R=$\sqrt{2}$,可得該球的表面積為S=4πR2=8π
故選:B.
點評 本題給出所有棱長均為2的正三棱柱,求它的外接球的表面積,著重考查了正三棱柱的性質(zhì)、球的內(nèi)切外接性質(zhì)和球的表面積公式等知識,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{5π}{6}$ | C. | $\frac{2π}{3}$ | D. | π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{7}$ | B. | 3 | C. | $\sqrt{11}$ | D. | $\sqrt{13}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
P(K2>k0) | 0.10 | 0.05 | 0.01 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30° | B. | 90° | C. | 30°或90° | D. | 60°或120° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com