16.在極坐標(biāo)系中,已知O為極點(diǎn),曲線C的極坐標(biāo)方程為ρ2=$\frac{4}{1+3si{n}^{2}θ}$,點(diǎn)M是曲線C上的動(dòng)點(diǎn),則|OM|的最大值為2.

分析 由題意可得|OM|=ρ=$\frac{2}{\sqrt{1+{3sin}^{2}θ}}$,再根據(jù)正弦函數(shù)的值域求得它的最大值.

解答 解:∵曲線C的極坐標(biāo)方程為ρ2=$\frac{4}{1+3si{n}^{2}θ}$,點(diǎn)M是曲線C上的動(dòng)點(diǎn),則|OM|=ρ=$\sqrt{\frac{4}{1+{3sin}^{2}θ}}$=$\frac{2}{\sqrt{1+{3sin}^{2}θ}}$,
故當(dāng)sinθ=0時(shí),|OM|取得最大值為2,
故答案為:2.

點(diǎn)評 本題主要考查極坐標(biāo)方程中,極坐標(biāo)的意義,求函數(shù)的最值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若點(diǎn)(sin$\frac{5π}{6}$,cos$\frac{5π}{6}$)在角α的終邊上,則角α的終邊位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知一個(gè)k進(jìn)制數(shù)132與十進(jìn)制數(shù)42相等,那么k等于(  )
A.8或5B.6C.5D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,四棱錐S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的一點(diǎn),且SE=2EB.
(1)證明:DE∥平面SBC;
(2)求二面角A-DE-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,網(wǎng)格紙上小正方形的邊長為2,粗線畫出的是某幾何體的三視圖則該幾何體的體積是( 。
A.B.C.12πD.14π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AD∥BC,側(cè)棱PA⊥底面ABCD,且PA=AB=BC=2,AD=1.
(Ⅰ)試作出平面PAB與平面PCD的交線EP(不需要說明畫法和理由);
(Ⅱ)求證:直線EP⊥平面PBC;
(Ⅲ)求二面角C-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某幾何體的三視圖如下,則幾何體的表面積為(  )
A.2$\sqrt{5}$+2$\sqrt{2}$B.6+2$\sqrt{3}$+2$\sqrt{2}$C.2+2$\sqrt{5}$+2$\sqrt{2}$D.6+2$\sqrt{5}$+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.△ABC為等腰直角三角形,AC=BC=4,∠ACB=90°,D、E分別是邊AC和AB的中點(diǎn),現(xiàn)將△ADE沿DE折起,使面ADE⊥面DEBC,H、F分別是邊AD和BE的中點(diǎn),平面BCH與AE、AF分別交于I、G兩點(diǎn).
(Ⅰ)求證:IH∥BC;
(Ⅱ)求二面角A-GI-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=lnx+$\frac{2a}{x+1}$-a(a∈R)在[$\frac{1}{2}$,+∞)上單調(diào)遞增,則a的取值范圍是( 。
A.[$\frac{9}{4}$,+∞)B.[2,+∞)C.(-∞,$\frac{9}{4}$]D.(-∞,2]

查看答案和解析>>

同步練習(xí)冊答案