10.在極坐標系中,設直線過點A($\sqrt{3}$,$\frac{2π}{3}$),B(3,$\frac{π}{2}$),且直線與曲線C:ρ=2rsinθ(r>0)有且只有一個公共點,求實數(shù)r的值.

分析 把極坐標及其極坐標方程化為直角坐標方程,利用直線與圓相切的充要條件即可得出.

解答 解:點A($\sqrt{3}$,$\frac{2π}{3}$),B(3,$\frac{π}{2}$),分別化為直角坐標A$(\sqrt{3}cos\frac{2π}{3},\sqrt{3}sin\frac{2π}{3})$,B$(3cos\frac{π}{2},3sin\frac{π}{2})$,即A$(-\frac{\sqrt{3}}{2},\frac{3}{2})$,B(0,3).
∴直線AB的方程為:y=$\frac{3-\frac{3}{2}}{0-(-\frac{\sqrt{3}}{2})}$x+3,化為:y=$\sqrt{3}x$+3.
直線與曲線C:ρ=2rsinθ(r>0)化為:ρ2=2rρsinθ,可得直角坐標方程:x2+y2=2ry,配方為:x2+(y-r)2=r2,可得圓心C(0,r),半徑r.
∵直線與曲線C:ρ=2rsinθ(r>0)有且只有一個公共點,
∴直線與圓C相切,∴$\frac{|-r+3|}{2}$=r,解得r=1.

點評 本題考查了極坐標及其極坐標方程化為直角坐標方程的方法、直線與圓相切的充要條件、點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.拋物線C:y2=4x的焦點為F,點P為拋物線上位于第一象限的點,過點P作C的準線的垂線,垂足為M,若$\overrightarrow{FP}$在$\overrightarrow{FM}$方向上的投影為$\sqrt{2}$,則△FPM的外接圓的方程為(  )
A.(x-1)2+(y-1)2=1B.(x-1)2+(y-2)2=4C.x2+(y-2)2=5D.x2+(y-1)2=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,橢圓E的方程為$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),點O為坐標原點,點A,B分別是橢圓的右頂點和上頂點,點M在線段AB上,滿足BM=2MA,直線OM的斜率為$\frac{1}{4}$.
(1)求橢圓E的離心率e;
(2)設點C的坐標為(0,-b),N為線段AC的中點,點N關于直線AB的對稱點的縱坐標為$\frac{11}{5}$,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.對于函數(shù)f1(x),f2(x),h(x),如果存在實數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
(Ⅰ)給出一組函數(shù):f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1,則h(x)是否為f1(x),f2(x)的生成函數(shù)?并說明理由.
(Ⅱ)設f1(x)=x(x>0),f2(x)=$\frac{1}{x}$(x>0),取a>0,b>0,生成函數(shù)h(x)圖象的最低點坐標為(2,8).若對于任意正實數(shù)x1,x2且x1+x2=1.試問是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.橢圓M:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的焦距為2$\sqrt{3}$,點P(0,2)關于直線y=-x的對稱點在橢圓M上.
(1)求橢圓M的方程;
(2)如圖,橢圓M的上、下頂點分別為A,B,過點P的直線l與橢圓M相交于兩個不同的點C,D.
①求$\overrightarrow{OC}$•$\overrightarrow{OD}$的取值范圍;
②當AD與BC相交于點Q時,試問:點Q的縱坐標是否是定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)y=ex•sin2x的導數(shù)為( 。
A.ex•sin2x+ex•cos2xB.ex•sin2x+2ex•cos2x
C.ex•sin2x-ex•cos2xD.ex•sin2x-2ex•cos2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{3}$,直線x+y=2與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切.
(1)求橢圓C的標準方程;
(2)設橢圓C的左、右焦點分別為F1,F(xiàn)2,直線l1過點F1且與橢圓C的長軸垂直,動直線l2與直線l1垂直,垂足為P,線段PF2的垂直平分線與直線l2交于點M,記M的軌跡為曲線D,設曲線D與x軸交于點Q,不同的兩個動點R,S在曲線D上,且滿足$\overrightarrow{QR}$•$\overrightarrow{QS}$=5.
(i)求證:直線RS恒過定點;
(ii)當直線RS與x軸正半軸相交時,求△QRS的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0).
(Ⅰ)若點A(1,$\frac{2\sqrt{3}}{3}$),B($\frac{\sqrt{6}}{2}$,1)均在橢圓C上,求橢圓C的標準方程;
(Ⅱ)已知過點(0,1),斜率為k(k<0)的直線l與圓O:x2+y2=$\frac{1}{2}$相切,且與橢圓C交于M,N兩點,若以MN為直徑的圓恒過原點O,則當a∈[$\frac{\sqrt{42}}{6}$,$\frac{\sqrt{6}}{2}$]時,求橢圓C的離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,已知單位圓x2+y2=1與x軸正半軸交于點P,當圓上一動點Q從P出發(fā)沿逆時針方向旋轉一周回到P點后停止運動,設OQ掃過的扇形對應的圓心角為x rad,當0<x<2π時,設圓心O到直線PQ的距離為y,y與x的函數(shù)關系式y(tǒng)=f(x)是如圖所示的程序框圖中的①②兩個關系式
(Ⅰ)寫出程序框圖中①②處得函數(shù)關系式;
(Ⅱ)若輸出的y值為$\frac{1}{2}$,求點Q的坐標.

查看答案和解析>>

同步練習冊答案