【題目】下列是關(guān)于復(fù)數(shù)的類比推理:
①復(fù)數(shù)的加減法運算可以類比多項式的加減法運算法則;
②由實數(shù)絕對值的性質(zhì)|x|2=x2類比得到復(fù)數(shù)z的性質(zhì)|z|2=z2;
③已知a,b∈R,若a-b>0,則a>b類比得已知z1,z2∈C,若z1-z2>0,則z1>z2;
④由向量加法的幾何意義可以類比得到復(fù)數(shù)加法的幾何意義.
其中推理結(jié)論正確的是__________.
【答案】①④
【解析】
分析:復(fù)數(shù)的加減法運算可以類比多項式的加減法運算法則,由向量的加法的幾何意義可以類比到復(fù)數(shù)加法的幾何意義,但是向量的模長和復(fù)數(shù)的模長不是通過列舉法得到的,還有兩個復(fù)數(shù)是不能比較大小的,即可得到答案.
詳解:復(fù)數(shù)的加減法運算可以類比多項式的加減法運算法則,所以①是正確的;
由實數(shù)絕對值的性質(zhì)類比得到復(fù)數(shù)的性質(zhì),即這兩個長度的求法不是通過類比得到的,所以②是錯誤的;
對于③中,已知,若,則,因為兩個復(fù)數(shù)是不能比較大小的,所以是錯誤的;
由向量的幾何意義可以類比得到復(fù)數(shù)的幾何意義,所以④是正確的.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+ , g(x)=x+lnx,其中a>0,且x∈(0,+∞).
(1)若a=1,求f(x)的最小值;
(2)若對任意x≥1,不等式f(x)≤g(x)恒成立,求實數(shù)a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:
①當直線AB與a成60°角時,AB與b成30°角;
②當直線AB與a成60°角時,AB與b成60°角;
③直線AB與a所成角的最小值為45°;
④直線AB與a所成角的最大值為60°.
其中正確的是________.(填寫所有正確結(jié)論的編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】遼寧號航母紀念章從2012年10月5日起開始上市,通過市場調(diào)查,得到該紀念章每枚的市場價(單位:元)與上市時間(單位:天)的數(shù)據(jù)如下:
上市時間天 | |||
市場價元 |
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個恰當?shù)暮瘮?shù)描述遼寧號航母紀念章的市場價與上市時間的變化關(guān)系:①;②;③;
(2)利用你選取的函數(shù),求遼寧號航母紀念章市場價最低時的上市天數(shù)及最低的價格;
(3)設(shè)你選取的函數(shù)為,若對任意實數(shù),關(guān)于的方程恒有個想異實數(shù)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=logm(m>0且m≠1),
(I)判斷f(x)的奇偶性并證明;
(II)若m=,判斷f(x)在(3,+∞)的單調(diào)性(不用證明);
(III)若0<m<1,是否存在β>α>0,使f(x)在[α,β]的值域為[logmm(β-1),logm(α-1)]?若存在,求出此時m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列滿足4Sn=(an+1)2 .
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn= , 求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓心在y軸上,半徑為1,且過點(1,2)的圓的方程為( 。
A.x2+(y﹣2)2=1
B.x2+(y+2)2=1
C.(x﹣1)2+(y﹣3)2=1
D.x2+(y﹣3)2=1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com