【題目】已知函數(shù)f(x)=logm(m>0且m≠1),
(I)判斷f(x)的奇偶性并證明;
(II)若m=,判斷f(x)在(3,+∞)的單調(diào)性(不用證明);
(III)若0<m<1,是否存在β>α>0,使f(x)在[α,β]的值域?yàn)?/span>[logmm(β-1),logm(α-1)]?若存在,求出此時(shí)m的取值范圍;若不存在,請(qǐng)說明理由.
【答案】(Ⅰ)f(x)是奇函數(shù)(Ⅱ)見解析(Ⅲ).
【解析】
(Ⅰ)先求定義域,再判斷與f(x)關(guān)系,最后根據(jù)奇偶性定義作判斷與證明,(Ⅱ)根據(jù)單調(diào)性定義進(jìn)行判斷,(Ⅲ)先根據(jù)單調(diào)性確定方程組,轉(zhuǎn)化為一元二次方程有兩正根,再根據(jù)二次方程實(shí)根分布列方程,最后解不等式組得結(jié)果.
解:(Ⅰ)f(x)是奇函數(shù);證明如下:
由解得x<-3或x>3,
所以f(x)的定義域?yàn)椋?/span>-∞,-3)∪(3,+∞),關(guān)于原點(diǎn)對(duì)稱.
∵=,
故f(x)為奇函數(shù)/
(Ⅱ)任取x1,x2∈(3,+∞)且x1<x2,
=,
∵(x1-3)(x2+3)-(x1+3)(x2-3)<0,∴(x1-3)(x2+3)<(x1+3)(x2-3),
即,
當(dāng)m=時(shí),,即f(x1)<f(x2).
故f(x)在(3,+∞)上單調(diào)遞減.
(Ⅲ)由(Ⅱ)知,當(dāng)0<m<1時(shí),f(x)在[α,β]上單調(diào)遞減.
假設(shè)存在β>α>0,使f(x)在[α,β]的值域?yàn)?/span>[logmm(β-1),logm(α-1)].
則有,∴.
所以α,β是方程的兩正根,
整理得mx2+(2m-1)x-3m+3=0在(0,+∞)有2個(gè)不等根α和β.
令h(x)=mx2+(2m-1)x-3m+3,則h(x)在(0,+∞)有2個(gè)零點(diǎn),
解得,
故m的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(1-2x)(x2-2).
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若直線y=4x+b是函數(shù)y=f(x)圖象的一條切線,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人們生活水平的不斷提高,家庭理財(cái)越來越引起人們的重視.某一調(diào)查機(jī)構(gòu)隨機(jī)調(diào)查了5個(gè)家庭的月收入與月理財(cái)支出(單位:元)的情況,如下表所示:
月收入(千元) | 8 | 10 | 9 | 7 | 11 |
月理財(cái)支出(千元) |
(I)在下面的坐標(biāo)系中畫出這5組數(shù)據(jù)的散點(diǎn)圖;
(II)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(III)根據(jù)(II)的結(jié)果,預(yù)測(cè)當(dāng)一個(gè)家庭的月收入為元時(shí),月理財(cái)支出大約是多少元?
(附:回歸直線方程中,,.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax4lnx+bx4﹣c(x>0)在x=1處取得極值﹣3﹣c,其中a,b,c為常數(shù).
(1)試確定a,b的值;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對(duì)任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列是關(guān)于復(fù)數(shù)的類比推理:
①?gòu)?fù)數(shù)的加減法運(yùn)算可以類比多項(xiàng)式的加減法運(yùn)算法則;
②由實(shí)數(shù)絕對(duì)值的性質(zhì)|x|2=x2類比得到復(fù)數(shù)z的性質(zhì)|z|2=z2;
③已知a,b∈R,若a-b>0,則a>b類比得已知z1,z2∈C,若z1-z2>0,則z1>z2;
④由向量加法的幾何意義可以類比得到復(fù)數(shù)加法的幾何意義.
其中推理結(jié)論正確的是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,第一象限內(nèi)有定點(diǎn)和射線,已知,的傾斜角分別為,,,, 軸上的動(dòng)點(diǎn)與,共線.
(1)求點(diǎn)坐標(biāo)(用表示);
(2)求面積關(guān)于的表達(dá)式;
(3)求面積的最小時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《孫子算經(jīng)》中有如下問題:“今有三女,長(zhǎng)女五日一歸,中女四日一歸,少女三日一歸.問:三女何日相會(huì)?” 意思是:“一家出嫁的三個(gè)女兒中,大女兒每五天回一次娘家,二女兒每四天回一次娘家,小女兒每三天回一次娘家.三個(gè)女兒從娘家同一天走后,至少再隔多少天三人再次相會(huì)?”假如回娘家當(dāng)天均回夫家,若當(dāng)?shù)仫L(fēng)俗正月初二都要回娘家,則從正月初三算起的一百天內(nèi),有女兒回娘家的天數(shù)有
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量=(sin(A-B),2cosA)=(1,cos(-B)),且=-sin2C,其中A、B、C分別為△ABC的三邊a、b、c所對(duì)的角.
(Ⅰ)求角C的大小;
(Ⅱ)若sinA+sinB=sinC,且 , 求c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面四邊形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖.
(1)求證:AB⊥CD;
(2)若M為AD中點(diǎn),求直線AD與平面MBC所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com