【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(1)證明:MN∥平面PAB;
(2)求直線AN與平面PMN所成角的正弦值.
【答案】
(1)證明:法一、如圖,取PB中點G,連接AG,NG,
∵N為PC的中點,
∴NG∥BC,且NG= BC,
又AM= ,BC=4,且AD∥BC,
∴AM∥BC,且AM= BC,
則NG∥AM,且NG=AM,
∴四邊形AMNG為平行四邊形,則NM∥AG,
∵AG平面PAB,NM平面PAB,
∴MN∥平面PAB;
法二、
在△PAC中,過N作NE⊥AC,垂足為E,連接ME,
在△ABC中,由已知AB=AC=3,BC=4,得cos∠ACB= ,
∵AD∥BC,
∴cos ,則sin∠EAM= ,
在△EAM中,
∵AM= ,AE= ,
由余弦定理得:EM= = ,
∴cos∠AEM= ,
而在△ABC中,cos∠BAC= ,
∴cos∠AEM=cos∠BAC,即∠AEM=∠BAC,
∴AB∥EM,則EM∥平面PAB.
由PA⊥底面ABCD,得PA⊥AC,又NE⊥AC,
∴NE∥PA,則NE∥平面PAB.
∵NE∩EM=E,
∴平面NEM∥平面PAB,則MN∥平面PAB
(2)解:在△AMC中,由AM=2,AC=3,cos∠MAC= ,得CM2=AC2+AM2﹣2ACAMcos∠MAC= .
∴AM2+MC2=AC2,則AM⊥MC,
∵PA⊥底面ABCD,PA平面PAD,
∴平面ABCD⊥平面PAD,且平面ABCD∩平面PAD=AD,
∴CM⊥平面PAD,則平面PNM⊥平面PAD.
在平面PAD內,過A作AF⊥PM,交PM于F,連接NF,則∠ANF為直線AN與平面PMN所成角.
在Rt△PAC中,由N是PC的中點,得AN= = ,
在Rt△PAM中,由PAAM=PMAF,得AF= ,
∴sin .
∴直線AN與平面PMN所成角的正弦值為 .
【解析】(1)法一、取PB中點G,連接AG,NG,由三角形的中位線定理可得NG∥BC,且NG= BC,再由已知得AM∥BC,且AM= BC,得到NG∥AM,且NG=AM,說明四邊形AMNG為平行四邊形,可得NM∥AG,由線面平行的判定得到MN∥平面PAB;
法二、證明MN∥平面PAB,轉化為證明平面NEM∥平面PAB,在△PAC中,過N作NE⊥AC,垂足為E,連接ME,由已知PA⊥底面ABCD,可得PA∥NE,通過求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,則結論得證;(2)連接CM,證得CM⊥AD,進一步得到平面PNM⊥平面PAD,在平面PAD內,過A作AF⊥PM,交PM于F,連接NF,則∠ANF為直線AN與平面PMN所成角.然后求解直角三角形可得直線AN與平面PMN所成角的正弦值.
【考點精析】根據(jù)題目的已知條件,利用直線與平面平行的判定和空間角的異面直線所成的角的相關知識可以得到問題的答案,需要掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則.
科目:高中數(shù)學 來源: 題型:
【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調查,下面是根據(jù)調查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方
圖:
將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.
(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料,在犯錯誤的概率不超過的前提下,你是否有理由認為“體育迷”與性別有關?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(Ⅱ)將上述調查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為.若每次抽取的結果是相互獨立的,求的分布列,期望和方差.
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心和拋物線的頂點都在坐標原點, 和有公共焦點,點在軸正半軸上,且的長軸長、短軸長及點到直線的距離成等比數(shù)列。
(Ⅰ)當的準線與直線的距離為時,求及的方程;
(Ⅱ)設過點且斜率為的直線交于, 兩點,交于, 兩點。當時,求的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知冪函數(shù)f(x)=x(2﹣k)(1+k)(k∈Z),且f(x)在(0,+∞)上單調遞增.
(1)求實數(shù)k的值,并寫出相應的函數(shù)f(x)的解析式;
(2)試判斷是否存在正數(shù)q,使函數(shù)g(x)=1﹣qf(x)+(2q﹣1)x在區(qū)間[﹣1,2]上的值域為[﹣4, ].若存在,求出q的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列函數(shù)中既是偶函數(shù)又在(﹣∞,0)上是增函數(shù)的是( )
A.y=x
B.y=
C.y=x﹣2
D.y=x
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC—A1B1C1中,AB=BC=BB1, ,D為AC上的點,B1C∥平面A1BD;
(1)求證:BD⊥平面;
(2)若且,求三棱錐A-BCB1的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),且在(0,+∞)是增函數(shù),又f(﹣3)=0,則不等式xf(x)≥0的解集是( )
A.{x|﹣3≤x≤3}
B.{x|﹣3≤x<0或0<x≤3}
C.{x|x≤﹣3或x≥3}
D.{x|x≤﹣3或x=0或x≥3}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=9x﹣2×3x+4,x∈[﹣1,2].
(1)設t=3x , x∈[﹣1,2],求t的最大值與最小值;
(2)求f(x)的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】今年的國慶假期是實施免收小型客車高速通行費后的第一個重大節(jié)假日,有一個群名為“天狼星”的自駕游車隊.該車隊是由31輛車身長都約為5m(以5m計算)的同一車型組成的,行程中經過一個長為2725m的隧道(通過該隧道的車速不能超過25m/s),勻
速通過該隧道,設車隊的速度為xm/s,根據(jù)安全和車流的需要,當0<x≤12時,相鄰兩車之間保持20m的距離;當12<x≤25時,相鄰兩車之間保持( )m的距離.自第1輛車車頭進入隧道至第31輛車車尾離開隧道所用的時間為y(s).
(1)將y表示為x的函數(shù);
(2)求該車隊通過隧道時間y的最小值及此時車隊的速度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com