20.已知函數(shù)f(x)=$\frac{1}{2}$x2-x+alnx(a>0)有兩個(gè)極值點(diǎn)x1、x2,且x1<x2
(1)求a的取值范圍;
(2)證明:f(x1)+f(x2)>$\frac{-3-2ln2}{4}$.

分析 (1)求出f(x)的導(dǎo)數(shù),結(jié)合二次函數(shù)的性質(zhì)求出a的范圍即可;
(2)依題意得f′(x)=0有兩個(gè)不同的根x1,x2且x1<x2,即x2-x+a=0有兩個(gè)不同的根x1,x2且x1<x2,
可得x1+x2=1,x1•x2=a,由(1)得a∈(0,$\frac{1}{4}$).f(x1)+f(x2)=)=$\frac{1}{2}$x12-x1+alnx1=$\frac{1}{2}$x22-x2+alnx2=$\frac{1}{2}[({x}_{1}+{x}_{2})^{2}-2{x}_{2}{x}_{1}]-({x}_{1}+{x}_{2})+a($lnx1+lnx2)=alnaa-a-$\frac{1}{2}$,令g(a)=alna-a-$\frac{1}{2}$,a∈(0,$\frac{1}{4}$).利用導(dǎo)數(shù)求解.

解答 解:(1)∵函數(shù)f(x)=$\frac{1}{2}$x2-x+alnx的定義域?yàn)椋?,+∞),
f′(x)=x-1+$\frac{a}{x}$=$\frac{{x}^{2}-x+a}{x}$,
當(dāng)△=1-4a≤0,即a≥$\frac{1}{4}$時(shí),f′(x)≥0恒成立,此時(shí)函數(shù)f(x)單調(diào)遞增,無(wú)極值;
當(dāng)當(dāng)△=1-4a>0,即a<$\frac{1}{4}$時(shí),∴f′(x)=0有兩個(gè)不同的根x1,x2且x1<x2,此時(shí)函數(shù)有兩個(gè)極值.
綜上,a的取值范圍(0,$\frac{1}{4}$).
(2)證明:∵f(x)有兩個(gè)極值點(diǎn)x1,x2且x1<x2,∴f′(x)=0有兩個(gè)不同的根x1,x2且x1<x2,
∴x2-x+a=0有兩個(gè)不同的根x1,x2且x1<x2,
∴x1+x2=1,x1•x2=a,由(1)得a∈(0,$\frac{1}{4}$).
f(x1)+f(x2)=)=$\frac{1}{2}$x12-x1+alnx1=$\frac{1}{2}$x22-x2+alnx2
=$\frac{1}{2}[({x}_{1}+{x}_{2})^{2}-2{x}_{2}{x}_{1}]-({x}_{1}+{x}_{2})+a($lnx1+lnx2)=alnaa-a-$\frac{1}{2}$,
令g(a)=alna-a-$\frac{1}{2}$,a∈(0,$\frac{1}{4}$).g′(a)=lna,在a∈(0,$\frac{1}{4}$)時(shí).g′(a)<0恒成立.
∴g(a)在(0,$\frac{1}{4}$)單調(diào)遞減,故g(a)$>g(\frac{1}{4})$=$\frac{-3-2ln2}{4}$.
∴f(x1)+f(x2)>$\frac{-3-2ln2}{4}$.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,考查不等式的證明,分類(lèi)討論思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,系統(tǒng)地總結(jié)了戰(zhàn)國(guó)、秦、漢時(shí)期的數(shù)學(xué)成就.書(shū)中將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱(chēng)之為“陽(yáng)馬”,若某“陽(yáng)馬”的三視圖如圖所示(單位:cm),則該陽(yáng)馬的外接球的表面積為( 。
A.100π cm2B.$\frac{500π}{3}$ cm2C.400π cm2D.$\frac{4000π}{3}$ cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)y=(x+1)3當(dāng)x=-1時(shí)( 。
A.有極大值B.有極小值
C.既無(wú)極大值,也無(wú)極小值D.無(wú)法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.?dāng)?shù)列{an}滿(mǎn)足:a1=2,當(dāng)n∈N*,n>1時(shí),a2+a3+…+an=4(an-1-1).
(Ⅰ)求a2,a3,并證明,數(shù)列{an+1-2an}為常數(shù)列;
(Ⅱ)設(shè)cn=$\frac{1}{2({a}_{n}+\frac{1}{{a}_{n}})+5}$,若對(duì)任意n∈N*,2a<c1+c2+…+cn<10a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(2)試判斷能否有97.5%的把握認(rèn)為“休閑方式與性別有關(guān)”
參考公式:1.獨(dú)立性檢驗(yàn)臨界值
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
2.${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({c+d})}}$( 其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知f($\frac{1}{{2}^{n+1}}$)=$\frac{1}{2}$f($\frac{1}{{2}^{n}}$)-$\frac{1}{{2}^{n+1}}$,f($\frac{1}{2}$)=-$\frac{1}{2}$,令Un=$\frac{f(\frac{1}{{2}^{n}})}{n}$,則{Un}的前n項(xiàng)和Tn=$\frac{1}{{2}^{n}}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.下面幾種推理是合情推理的是①②④
①由圓的性質(zhì)類(lèi)比出球的有關(guān)性質(zhì);
②由直角三角形、等腰三角形、等邊三角形的內(nèi)角和是180°,歸納出所有三角形的內(nèi)角和都是180°;
③教室內(nèi)有一把椅子壞了,則該教室內(nèi)的所有椅子都?jí)牧耍?br />④三角形內(nèi)角和是180°,四邊形內(nèi)角和是360°,五邊形內(nèi)角和是540°,由此得出凸多邊形的內(nèi)角和是(n-2)•180°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知曲線(xiàn)${C_1}:\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),以原點(diǎn)為極點(diǎn),以x正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)${C_2}:\frac{1}{ρ^2}=\frac{{{{cos}^2}θ}}{2}+{sin^2}θ$.
(Ⅰ)寫(xiě)出曲線(xiàn)C1的普通方程,曲線(xiàn)C2的直角坐標(biāo)方程;
(Ⅱ)若M(1,0),且曲線(xiàn)C1與曲線(xiàn)C2交于兩個(gè)不同的點(diǎn)A,B,求$\frac{|MA|•|MB|}{|AB|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在公差不為0的等差數(shù)列{an}中,a22=a3+a6,且a3為a1與a11的等比中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=(-1)n$\frac{n}{({a}_{n}-\frac{1}{2})({a}_{n+1}-\frac{1}{2})}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案