【題目】某校舉辦的體育節(jié)設(shè)有投籃項目.該項目規(guī)定:每位同學(xué)僅有三次投籃機會,其中前兩次投籃每投中一次得1分,第三次投籃投中得2分,若不中不得分,投完三次后累計總分.

1)若甲同學(xué)每次投籃命中的概率為,且相互不影響,記甲同學(xué)投完三次后的總分為X,求隨機變量X的概率分布列;

2)若(1)中的甲同學(xué)邀請乙同學(xué)一起參加投籃項目,已知乙同學(xué)每次投籃命中的概率為,且相互不影響,甲、乙兩人之間互不干擾.求甲同學(xué)的總分低于乙同學(xué)的總分的概率.

【答案】1)答案見解析;(2.

【解析】

1)隨機變量X可能的取值為0,1,23,4,根據(jù)獨立重復(fù)試驗的概率公式求出的各個取值的概率可得分布列;

2)根據(jù)相互獨立事件的乘法公式求出四個互斥事件的概率再相加即可得到答案.

1)隨機變量X可能的取值為0,12,34,

;

;

.

所以隨機變量的分布列為:

0

1

2

3

4

2)設(shè)乙同學(xué)投完后的總分為Y,則隨機變量Y可能的取值為0,12,34,

;;

;.

最終甲同學(xué)的總分低于乙同學(xué)的總分為事件A,由四種情況組成,且相互獨立,四種情況分別為甲得0分且乙得分超過0分,甲得1分且乙得分超過1分,甲得2分且乙得分超過2分,甲得3分且乙得分超過3.

所以.

所以甲同學(xué)的總分低于乙同學(xué)的總分的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】健身館某項目收費標準為每次60元,現(xiàn)推出會員優(yōu)惠活動:具體收費標準如下:

消費次數(shù)

1

2

3

不少于4

收費比例

0.95

0.90

0.85

0.80

現(xiàn)隨機抽取了100位會員統(tǒng)計它們的消費次數(shù),得到數(shù)據(jù)如下:

消費次數(shù)

1

2

3

不少于4

頻數(shù)

60

25

10

5

假設(shè)該項目的成本為每次30元,根據(jù)給出的數(shù)據(jù)回答下列問題:

1)估計1位會員至少消費兩次的概率

2)某會員消費4次,求這4次消費獲得的平均利潤;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρsinθ2

1M為曲線C1上的動點,點P在線段OM上,且滿足,求點P的軌跡C2的直角坐標方程;

2)曲線C2上兩點與點Bρ2,α),求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)據(jù)的收集和整理在當今社會起到了舉足輕重的作用,它用統(tǒng)計的方法來幫助人們分析以往的行為習(xí)慣,進而指導(dǎo)人們接下來的行動.

某支足球隊的主教練打算從預(yù)備球員甲、乙兩人中選一人為正式球員,他收集到了甲、乙兩名球員近期5場比賽的傳球成功次數(shù),如下表:

場次

第一場

第二場

第三場

第四場

第五場

28

33

36

38

45

39

31

43

39

33

1)根據(jù)這兩名球員近期5場比賽的傳球成功次數(shù),完成莖葉圖(莖表示十位,葉表示個位);分別在平面直角坐標系中畫出兩名球員的傳球成功次數(shù)的散點圖;

2)求出甲、乙兩名球員近期5場比賽的傳球成功次數(shù)的平均值和方差;

3)主教練根據(jù)球員每場比賽的傳球成功次數(shù)分析出球員在場上的積極程度和技術(shù)水平,同時根據(jù)多場比賽的數(shù)據(jù)也可以分析出球員的狀態(tài)和潛力.你認為主教練應(yīng)選哪位球員?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中,側(cè)面為菱形,且,點E,F分別為,的中點.求證:

1)平面平面;

2平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù),其中e=2.71828…為自然對數(shù)的底數(shù).

(Ⅰ)證明:函數(shù)上有唯一零點;

(Ⅱ)記x0為函數(shù)上的零點,證明:

(。;

(ⅱ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為為參數(shù)),直線,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.

1)求直線l和曲線C的極坐標方程;

2)若直線與直線l相交于點A,與曲線C相交于不同的兩點MN.的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),證明.

1存在唯一的極小值點;

2的極小值點為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程是為參數(shù)),以原點為極點,以軸的非負半軸為極軸建立極坐標系,已知曲線的極坐標方程為.

)求直線的普通方程和曲線的直角坐標方程;

)過原點的直線與直線交于點,與曲線交于、兩點,求的值.

查看答案和解析>>

同步練習(xí)冊答案