【題目】如圖,在△ABC中,BC邊上的高AM所在的直線方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0與BC相交于點P,若點B的坐標為(1,2).
(1)分別求AB和BC所在直線的方程;
(2)求P點坐標和AC所在直線的方程.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程x2﹣(a2+b2﹣6b)x+a2+b2+2a﹣4b+1=0的兩個實數(shù)根x1 , x2滿足x1≤0≤x2≤1,則a2+b2+4a的最小值和最大值分別為( )
A. 和5+4
B.﹣ 和5+4
C.﹣ 和12
D.﹣ 和15﹣4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(1)求證:AC⊥平面BDE;
(2)設(shè)點M是線段BD上一個動點,試確定點M的位置,使得AM∥平面BEF,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù)),設(shè),
(1)若f(-1)=0,且對任意實數(shù)x均有f(x)≥0成立,求F(x)的表達式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(3)設(shè)mn<0,m+n>0,a>0,且f(x)滿足f(-x)=f(x),試比較F(m)+F(n)的值與0的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點.
(1)求橢圓的方程;
(2)設(shè)不過原點的直線與該橢圓交于兩點,滿足直線的斜率依次成等比數(shù)列,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AB∥C,AD=DC=CB=1,∠ABC═60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求證:BC⊥平面ACFE;
(2)求二面角A﹣BF﹣C的平面角的余弦值;
(3)若點M在線段EF上運動,設(shè)平MAB與平FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年4月23日“世界讀書日”來臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機抽取了100名學(xué)生,并獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表.
(Ⅰ)求的值,并作出這些數(shù)據(jù)的頻率分布直方圖;
(Ⅱ)假設(shè)每組數(shù)據(jù)組間是平均分布的,試估計該組數(shù)據(jù)的平均數(shù);(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅲ)現(xiàn)從第3、4、5組中用分層抽樣的方法抽取6人參加!爸腥A詩詞比賽”,經(jīng)過比賽后從這6人中選拔2人組成該校代表隊,求這2人來自不同組別的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AB⊥平面BCP,CD∥平面ABP,AB=BC=CP=BP=2CD=2
(1)證明:平面ABP⊥平面ADP;
(2)若直線PA與平面PCD所成角為α,求sinα的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com