9.已知$\overrightarrow{a}$=(1,0),$\overrightarrow$=(2,1),則$\overrightarrow{a}$•$\overrightarrow$=2.

分析 根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算,進(jìn)行計(jì)算即可.

解答 解:$\overrightarrow{a}$=(1,0),$\overrightarrow$=(2,1),
∴$\overrightarrow{a}$•$\overrightarrow$=1×2+0×1=2.
故答案為:2.

點(diǎn)評 本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求下列函數(shù)的值域.
(1)y=2x+1,x∈{1,2,3,4,5};
(2)y=$\sqrt{x}$+1;
(3)y=$\frac{x}{x+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知定義在R上的函數(shù)f(x)滿足f(x+1)=-f(x),且f(x)=$\left\{\begin{array}{l}{-1,-1<x≤0}\\{1,0<x≤1}\end{array}\right.$,則f(4)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知α為第三象限的角,且cosα=$-\frac{1}{3}$,則tanα=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在對某小學(xué)的學(xué)生進(jìn)行是否吃零食的調(diào)查中,得到如下數(shù)據(jù)
吃零食不吃零食合計(jì)
男同學(xué)243155
女同學(xué)82634
合計(jì)325789
根據(jù)上述數(shù)據(jù)分析,我們得出的結(jié)論是(  )
A.認(rèn)為男女同學(xué)吃零食與否與性別有關(guān)
B.認(rèn)為男女同學(xué)吃零食與否與性別沒有關(guān)系
C.性別不同決定了吃零食與否
D.以上都是錯(cuò)誤的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S3=24,S10=10,則使得Sn取最大值時(shí)n的值為( 。
A.5或6B.4或5C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.道德教育培訓(xùn)前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,道德教育培訓(xùn)時(shí)全修好;單位對道德教育培訓(xùn)前后各半年內(nèi)餐椅的損壞情況作了一個(gè)大致統(tǒng)計(jì),具體數(shù)據(jù)如下:
損壞餐椅數(shù)未損壞餐椅數(shù)總 計(jì)
道德教育培訓(xùn)前50150200
道德教育培訓(xùn)后30170200
總  計(jì)80320400
(1)求:道德教育培訓(xùn)前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與道德教育培訓(xùn)是否有關(guān)?
(2)請說明是否有97.5%以上的把握認(rèn)為損毀餐椅數(shù)量與道德教育培訓(xùn)有關(guān)?
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.△ABC中,若角A,B,C成等差數(shù)列,則$\frac{ac}{{{b^2}sinAsinC}}$=$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)隨機(jī)變量 ξ~B(n,p),若E(ξ)=2.4,D(ξ)=1.44,則參數(shù)n,p的值為6,0.4.

查看答案和解析>>

同步練習(xí)冊答案