16.設(shè)z是虛數(shù),ω=z+$\frac{1}{z}$是實(shí)數(shù),且-1<ω<2.
(1)求|z|的值及z的實(shí)部的取值范圍;
(2)求|z-2|的取值范圍.

分析 (1)設(shè)z=a+bi(a,b∈R),則ω=a+$\frac{a}{{a}^{2}+^{2}}$+$(b-\frac{{a}^{2}+^{2}})$i是實(shí)數(shù),可得b-$\frac{{a}^{2}+^{2}}$=0,又z是虛數(shù),可得b≠0,a2+b2=1.可得|z|=1,由ω=2a,-1<ω<2.即可得出z的實(shí)部的取值范圍.
(2)z-2=(a-2)+bi,可得|z-2|=$\sqrt{(a-2)^{2}+^{2}}$=$\sqrt{5-4a}$,利用$-\frac{1}{2}<a<1$,即可得出.

解答 解:(1)設(shè)z=a+bi(a,b∈R),則ω=z+$\frac{1}{z}$=a+bi+$\frac{1}{a+bi}$=a+$\frac{a}{{a}^{2}+^{2}}$+$(b-\frac{{a}^{2}+^{2}})$i是實(shí)數(shù),∴b-$\frac{{a}^{2}+^{2}}$=0,又z是虛數(shù),∴b≠0,∴a2+b2=1.
∴|z|=1,∴ω=2a,∵-1<ω<2.∴-1<2a<2,解得$-\frac{1}{2}<a<1$.∴z的實(shí)部的取值范圍是$(-\frac{1}{2},1)$.
(2)z-2=(a-2)+bi,∴|z-2|=$\sqrt{(a-2)^{2}+^{2}}$=$\sqrt{5-4a}$,∵$-\frac{1}{2}<a<1$,∴1<5-4a<7,∴|z-2|的取值范圍是$(1,\sqrt{7})$.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、實(shí)部的意義、方程的解法,不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在四棱錐中P-ABCD,底面ABCD為邊長(zhǎng)為$\sqrt{2}$的正方形,PA⊥BD.
(1)求證:PB=PD;
(2)若E,F(xiàn)分別為PC,AB的中點(diǎn),EF⊥平面PCD,求直線(xiàn)PB與平面PCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列說(shuō)法中,正確的是(  )
A.命題“若am2<bm2,則a<b”的逆命題是真命題
B.已知x∈R,則“x>2”是“x>1”的必要不充分條件
C.命題“p或q”為真命題,則命題“p”和命題“q”均為真命題
D.命題“?x∈R,使得|x|<1”的否定是:“?x∈R,都有x≤-1或x≥1”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知數(shù)列{2n•an}的前n項(xiàng)和為$\frac{n(n-3)}{2}$,若存在n∈N*,使得an≥m成立,則m的取值范圍是$m≤\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)點(diǎn)(x,y)在不等式組$\left\{\begin{array}{l}x≥1\\ y≥1\\ x+y-4≤0\end{array}\right.$所表示的平面區(qū)域上,若對(duì)于b∈[0,1]時(shí),不等式ax-by>b恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{2}{3}$,4)B.($\frac{2}{3}$,+∞)C.(4,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知x,y滿(mǎn)足$\left\{\begin{array}{l}{3x+y-6≥0}\\{x+y-4≤0}\\{x-y-2≤0}\end{array}\right.$,則z=2x-y的最小值-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x-2,(x≥10)}\\{f[f(x+6)],(x<10)}{\;}\end{array}\right.$,則f(9)的值為( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.畫(huà)出不等式組$\left\{\begin{array}{l}{x-2y+1≤0}\\{x+y-5≤0}\\{2x-y-1>0}\end{array}\right.$表示的平面區(qū)域,并求其面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.實(shí)數(shù)x,y滿(mǎn)足x2+y2-4y+3=0,則$\frac{y}{x}$的取值范圍是( 。
A.[-$\sqrt{3}$,$\sqrt{3}$]B.(-∞,$\sqrt{3}$]C.[-$\sqrt{3}$,+∞)D.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案