5.畫出不等式組$\left\{\begin{array}{l}{x-2y+1≤0}\\{x+y-5≤0}\\{2x-y-1>0}\end{array}\right.$表示的平面區(qū)域,并求其面積.

分析 由題意作平面區(qū)域,從而由直線方程解出三個(gè)點(diǎn)的坐標(biāo),從而求三角形的面積.

解答 解:由題意作平面區(qū)域如下,

由$\left\{\begin{array}{l}{y=2x-1}\\{y=5-x}\end{array}\right.$解得,
B(2,3),
同理可得,C(3,2),D(1,1),
故|BC|=$\sqrt{2}$,
點(diǎn)D到直線BC的距離h=$\frac{3\sqrt{2}}{2}$,
故S=$\frac{1}{2}$×$\sqrt{2}$×$\frac{3\sqrt{2}}{2}$=$\frac{3}{2}$.

點(diǎn)評(píng) 本題考查了線性規(guī)劃的應(yīng)用及數(shù)形結(jié)合的思想方法應(yīng)用,同時(shí)考查了點(diǎn)到直線的距離的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知p:x<-3或x>1,q:x>a,若?p是?q的充分不必要條件,則a的取值范圍a≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)z是虛數(shù),ω=z+$\frac{1}{z}$是實(shí)數(shù),且-1<ω<2.
(1)求|z|的值及z的實(shí)部的取值范圍;
(2)求|z-2|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列結(jié)論正確的個(gè)數(shù)是3.
①對(duì)于函數(shù)f(x)=$\left\{\begin{array}{l}{sinπx,x∈[0,2]}\\{\frac{1}{2}f(x-2),x∈(2,+∞)}\\{\;}\end{array}\right.$,任取x1、x2∈[0,+∞),都有|f(x1)-f(x2)|≤2恒成立;
②函數(shù)f(x)=cos2αx-sin2αx的最小正周期為π是“α=1”的必要不充分條件;
③x2+2x≥ax在x∈[1,2]上恒成立?(x2+2x)min≥(ax)maz在x∈[1,2]上恒成立;
④?m∈R,使f(x)=mx${\;}^{{m}^{2}+2m}$是冪函數(shù),且在(0,+∞)上是單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若x>0,y>0,且2lg(x-2y)=lgx+lgy,則$\frac{x}{y}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={a|x2+2ax+4>0,不等式對(duì)x∈R恒成立},B={x|2<($\sqrt{2}$)x+k<4}
(1)若k=1,求A∪B;
(2)若A∩B=∅,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知等差數(shù)列{an}中,a3=9,d=7,an≤695,則這個(gè)數(shù)列至多有( 。
A.98項(xiàng)B.99項(xiàng)C.100項(xiàng)D.101項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知各項(xiàng)均為正的等比數(shù)列{an},若a1,$\frac{1}{2}$a3,2a2成等差數(shù)列,則$\frac{{a}_{11}+{a}_{16}}{{a}_{10}+{a}_{15}}$等于(  )
A.1-$\sqrt{2}$B.1+$\sqrt{2}$C.3+2$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{1-i}{i}$對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案