A. | [-$\sqrt{3}$,$\sqrt{3}$] | B. | (-∞,$\sqrt{3}$] | C. | [-$\sqrt{3}$,+∞) | D. | (-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞) |
分析 整理方程可知,方程表示以點(0,2)為圓心,以1為半徑的圓,設(shè)$\frac{y}{x}$=k,進而根據(jù)圓心(0,2)到y(tǒng)=kx的距離為小于等于半徑,確定出k的范圍,即為所求式子的范圍.
解答 解:設(shè)$\frac{y}{x}$=k,即kx-y=0,
由圓方程x2+y2-4y+3=0,得到x2+(y-2)2=1得到圓心坐標為(0,2),半徑r=1,
由題意,圓心到直線的距離d≤r,即$\frac{2}{\sqrt{{k}^{2}+1}}$≤1,
解得:k≤-$\sqrt{3}$或k≥$\sqrt{3}$,
則k的取值范圍是(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞),
故選:D.
點評 本題考查了直線與圓相交的性質(zhì),涉及的知識有:點到直線的距離公式,利用了轉(zhuǎn)化的思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 98項 | B. | 99項 | C. | 100項 | D. | 101項 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1-$\sqrt{2}$ | B. | 1+$\sqrt{2}$ | C. | 3+2$\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | 任意正數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com