6.已知命題p,q,則“p或q是真命題”是“¬p為假命題”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)充分必要條件的定義以及符合命題的定義判斷即可.

解答 解:命題“p或q是真命題”,
則p是真命題或q是真命題,
推不出“¬p為假命題”,不是充分條件,
而¬p為假命題,則p是真命題,
推出“p或q是真命題”,是必要條件;
故選:B.

點(diǎn)評 本題考查了充分必要條件,考查符合命題的判斷,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某視頻加工廠以前的衛(wèi)生監(jiān)測資料表明,按照國家標(biāo)準(zhǔn)衡量,該工廠一個月內(nèi)每天的各項(xiàng)衛(wèi)生指標(biāo)達(dá)到優(yōu)良標(biāo)準(zhǔn)的概率是0.95,連續(xù)兩個月達(dá)到優(yōu)良標(biāo)準(zhǔn)的概率是0.76,已知今年某個月各項(xiàng)指標(biāo)均達(dá)到優(yōu)良,則隨后一個月也達(dá)到優(yōu)良的概率是(  )
A.0.8B.0.95C.0.76D.0.722

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知:數(shù)列{an},{bn}中,a1=0,b1=1,且當(dāng)n∈N*時,an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列;
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求最小自然數(shù)k,使得當(dāng)n≥k時,對任意實(shí)數(shù)λ∈[0,1],不等式(2λ-3)bn≥(2λ-4)an+λ-3恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓$\frac{x^2}{4}$+y2=1,A,B,C,D為橢圓上四個動點(diǎn),且AC,BD相交于原點(diǎn)O,設(shè)A(x1,y1),B(x2,y2)滿足$\frac{{{y_1}{y_2}}}{{\overrightarrow{OA}•\overrightarrow{OB}}}$=$\frac{1}{5}$.
(1)求證:$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow{0}$;
(2)kAB+kBC的值是否為定值,若是,請求出此定值,并求出四邊形ABCD面積的最大值,否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ln(x2+1),g(x)=$\frac{1}{{x}^{2}-1}$+a.
(1)若f(x)的一個極值點(diǎn)到直線l:2$\sqrt{2}$x+y+a+5=0的距離為1,求a的值;
(2)求方程f(x)=g(x)的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)y=ax3+3x2+3x+3在x=1處取得極值,則a=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-|x|,(x≤1)}\\{{x}^{2}-4x+3,(x>1)}\end{array}\right.$,若f(f(m))≥0,則實(shí)數(shù)m的取值范圍是( 。
A.[-2,2]B.[-2,2]∪[4,+∞)C.[-2,2+$\sqrt{2}$]D.[-2,2+$\sqrt{2}$]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知命題p:2≤2,命題q:?x0∈R,使得x02+2x0+2=0,則下列命題是真命題的是( 。
A.¬pB.¬p∨qC.p∧qD.p∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列命題中正確命題的個數(shù)是(  )
①對于命題p:?x∈R,使得x2+x-1<0,則¬p:?x∈R,均有x2+x-1>0.
②p是q的必要不充分條件,則¬p是¬q的充分不必要條件
③命題“若x=y,則sinx=siny”的逆否命題為真命題.
④若p∨q為真命題,則p∧q為真命題.
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習(xí)冊答案