已知向量
a
=(ω,2),
b
=(-1,1).
(1)若|
a
|=
2
|
b
|,求ω的值;
(2)若<
a
,
b
>=60°,求向量
a
考點:平面向量數(shù)量積的運算
專題:計算題,平面向量及應(yīng)用
分析:(1)運用向量模的公式,計算即可得到;
(2)運用向量的數(shù)量積的定義和坐標表示,即可得到所求向量.
解答: 解:(1)向量
a
=(ω,2),
b
=(-1,1),
則|
a
|=
4+ω2
,|
b
|=
2
,
若|
a
|=
2
|
b
|,則
4+ω2
=2,解得,ω=0;
(2)若<
a
,
b
>=60°,
a
b
=|
a
|•|
b
|•cos60°=
2
2
4+ω2
=2-ω,
解得,ω=4-2
3
(4+2
3
舍去).
a
=(4-2
3
,2).
點評:本題考查向量的數(shù)量積的定義和坐標公式,考查模的公式及運用,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)的定義域:
(1)y=
log2(3x-5)
;  
(2)y=
log0.5(4x)-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(x-
π
6
)+cosx(x∈R).
(1)求函數(shù)f(x)的最小正周期;
(2)f(α)=-
1
3
,α∈(-
π
2
,0),求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,已知向量
m
=(sinB,sinA-2sinC),
n
=(cosA-2cosC,cosB),且
m
n

(1)求
sinC
sinA
的值;
(2)若∠C=∠A+
π
3
,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(x)+f(1-x)=1,f(
x
3
)=
1
2
f(x)且當(dāng)0≤x1<x2≤1時,f(x1)≤f(x2),則f(
1
3
)+f(
1
7
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(sinx+cosx)2-2
3
cos2x+
3

(1)將f(x)的圖象向左平移m(m>0)個單位后,得到偶函數(shù)g(x)的圖象,求m的最小值;
(2)在區(qū)間[0,π]上,求滿足f(x)≤2的x的取值集合M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin22x+
3
sin2x•cos2x.
(1)求函數(shù)f(x)的最小正周期;
(2)若x∈[
π
8
,
π
4
],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f'(x)=
2ax2+x-(2a-1)
x2
=
(x+1)[2ax-(2a-1)]
x2

(1)若函數(shù)f(x)在(0,+∞),f'(x)≥0處取得極值,求f'(x)≤0,(0,+∞)的值;
(2)若a=0,函數(shù)f'(x)=
x+1
x2
>0在f(x)上是單調(diào)函數(shù),求(0,+∞)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,其中a1=1,且當(dāng)n≥2,an=
an-1
2an-1+1
,求通項公式an

查看答案和解析>>

同步練習(xí)冊答案