已知函數(shù)f(x)=sin22x+
3
sin2x•cos2x.
(1)求函數(shù)f(x)的最小正周期;
(2)若x∈[
π
8
,
π
4
],求f(x)的值域.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的周期性及其求法,正弦函數(shù)的圖象
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:(1)化簡(jiǎn)函數(shù)f(x)的解析式,由三角函數(shù)的周期性及其求法即可求出函數(shù)f(x)的最小正周期;
(2)根據(jù)x的取值范圍,求出4x-
π
6
的取值范圍,從而可求f(x)的值域.
解答: 解:(1)∵f(x)=sin22x+
3
sin2x•cos2x=
1-cos4x
2
+
3
2
sin4x=sin(4x-
π
6
+
1
2
,
∴T=
4
=
π
2

即函數(shù)f(x)的最小正周期為
π
2
;
(2)∵x∈[
π
8
,
π
4
],
∴4x-
π
6
∈[
π
3
6
],
∴sin(4x-
π
6
)∈[
1
2
,1],
∴sin(4x-
π
6
+
1
2
∈[1,
3
2
],
∴f(x)的值域?yàn)閇1,
3
2
].
點(diǎn)評(píng):本題主要考察了三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的周期性及其求法,三角函數(shù)的圖象與性質(zhì),屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=-
3
,α∈(
π
2
,π),則cosα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

e1
,
e2
夾角60°,|
e1
|=|
e2
|=1,
a
=2
e1
+
e2
,
b
=-3
e1
+2
e2
,則
a
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(ω,2),
b
=(-1,1).
(1)若|
a
|=
2
|
b
|,求ω的值;
(2)若<
a
,
b
>=60°,求向量
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,內(nèi)角A、B、C對(duì)邊分別為a、b、c.已知
b
a+c
+
sinC
sinA+sinB
=1.
(l)求A;(2)若b=5,
CA
CB
=-5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a1,a2,…,an為正整數(shù),其中至少有五個(gè)不同值,若對(duì)任意的i,j(1≤i<j≤n),存在k,l(k≠l,且異于i與j)使得ai+aj=ak+al,則n的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x3-ax2+3x,g(x)=lnx+b
(Ⅰ)若曲線h(x)=
f(x)
x
+g(x)在x=1處的切線是x+y=0,求實(shí)數(shù)a和b的值;
(Ⅱ)若x=3是f(x)的極值點(diǎn),求f(x)在[0,2]上的最大最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓的一個(gè)頂點(diǎn)為(0,2),離心率為e=
1
2
,以坐標(biāo)軸為對(duì)稱軸的橢圓方程是( 。
A、
3
16
x2+
y2
4
=1
B、
y2
4
+
x2
3
=1
C、
3
16
x2+
y2
4
=1或
y2
4
+
x2
3
=1
D、
y2
8
+
y2
4
=1或
y2
4
+
x2
3
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

植樹(shù)節(jié)某班20名同學(xué)在一段直線公路一側(cè)植樹(shù),每人植一棵,相鄰兩棵相距3米,開(kāi)始時(shí)需將樹(shù)苗集中放在某一樹(shù)坑旁邊,現(xiàn)將樹(shù)坑從1至20依次編號(hào),為使各位同學(xué)從各自樹(shù)坑前來(lái)領(lǐng)取樹(shù)苗所走的路程總和最小,樹(shù)苗可以放置的兩個(gè)最佳坑位的編號(hào)為
 
.若集中放在兩個(gè)樹(shù)坑旁邊(每坑旁10棵樹(shù)苗),則最佳坑位編號(hào)又分別為
 
、
 

查看答案和解析>>

同步練習(xí)冊(cè)答案